javac(1)

NAME

javac(1)

javac — Java compiler

SYNOPSIS

javac [—bootclasspath bootclasspath] [—classpath classpath] [—d directory]
[—deprecation] [—encoding encoding]
[—extdirs directories]
[-9 | —g:none | —g:keyword-list] [-Joption] [—nowarn][-O]
[—sourcepath sourcepath] [—target version] [—verbose] [=X]
[—Xstdout filename] [sourcefiles] [@files]

PARAMETERS

Options may be in any order. For a discussion of parameters which apply to a specific option, see below.
sourcefiles One or more source files to be compiled (such as MyClass.java).
@files One or more files that list source files.

DESCRIPTION

The javac tool reads class and interface definitions, written in the Java programming language, and com-
piles them into bytecode class files.

There are two ways to pass source code file names to javac:
 For a small number of source files, simply list the file names on the command line.

» For a large number of source files, list the the file names in a file, separated by blanks or line breaks.
Then use the list file name on the javac command line, preceded by an @ character.

Source code file names must have .java suffixes, class file names must have .class suffixes, and both source
and class files must have root names that identify the class. For example, a class called MyClass would be
written in a source file called MyClass.java and compiled into a bytecode class file called MyClass.class.

Inner class definitions produce additional class files. These class files have names combining the inner and
outer class names, such as MyClass$MylInnerClass.class.

You should arrange source files in a directory tree that reflects their package tree. For example, if you keep
all your source files in /workspace, the source code for com.mysoft.mypack.MyClass should be in
/workspace/com/mysoft/mypack/MyClass.java.

By default, the compiler puts each class file in the same directory as its source file. You can specify a sepa-
rate destination directory with —d (see OPTIONS, below).

Searching for Types

When compiling a source file, the compiler often needs information about a type it does not yet recognize.
The compiler needs type information for every class or interface used, extended, or implemented in the
source file. This includes classes and interfaces not explicitly mentioned in the source file but which pro-
vide information through inheritance.

For example, when you subclass java.applet.Applet, you are also using Applet’s ancestor classes:
java.awt.Panel, java.awt.Container, java.awt.Component, and java.awt.Object.

When the compiler needs type information, it looks for a source file or class file which defines the type.
The compiler searches first in the bootstrap and extension classes, then in the user class path. The user
class path is defined by setting the CLASSPATH environment variable or by using the —classpath command
line option. (For details, see Setting the Class Path.) If you use the —sourcepath option, the compiler
searches the indicated path for source files; otherwise the compiler searches the user class path both for
class files and source files. You can specify different bootstrap or extension classes with the —bootclass-
path and —extdirs options; see Cross-Compilation Options below.

A successful type search may produce a class file, a source file, or both. Here is how javac handles each
situation:

 Search produces a class file but no source file: javac uses the class file.

05 March 2002 1

javac(1) javac(1)

 Search produces a source file but no class file: javac compiles the source file and uses the resulting class
file.

» Search produces both a source file and a class file: javac determines whether the class file is out of date.
If the class file is out of date, javac recompiles the source file and uses the updated class file. Otherwise,
javac just uses the class file.

By default, javac considers a class file out of date only if it is older than the source file.

Note that javac can silently compile source files not mentioned on the command line. Use the —verbose
option to trace automatic compilation.

OPTIONS
The compiler has a set of standard options that are supported on the current development environment and
will be supported in future releases. An additional set of non-standard options are specific to the current
virtual machine implementation and are subject to change in the future. Non-standard options begin with
-X.

Standard Options
—classpath classpath
Sets the user class path, overriding the user class path in the CLASSPATH environment variable. If
neither CLASSPATH or —classpath is specified, the user class path consists of the current direc-
tory. See Setting the Class Path for more details.

If the —sourcepath option is not specified, the user class path is searched for source files as well as
class files.

—d directory
Sets the destination directory for class files. The destination directory must already exist; javac
will not create the destination directory. If a class is part of a package, javac puts the class file in a
subdirectory reflecting the package name, creating directories as needed. For example, if you
specify —d /home/myclasses and the class is called com.mypackage.MyClass, then the class file
is called /home/myclasses/com/mypackage/MyClass.class.

If —d is not specified, javac puts the class file in the same directory as the source file.
Note that the directory specified by —d is not automatically added to your user class path.

—deprecation
Shows a description of each use or override of a deprecated member or class. Without —depreca-
tion, javac shows the names of source files that use or override deprecated members or classes.

—encoding encoding
Sets the source file encoding name, such as EUCJIS/SJIS. If —encoding is not specified, the plat-
form default converter is used.

-g Generates all debugging information, including local variables. By default, only line number and
source file information is generated.

-g:none
Does not generate any debugging information.

—g:keyword-list
Generates only some kinds of debugging information, specified by a comma separated list of
keywords. Valid keywords are:

source Source file debugging information
lines Line number debugging information
vars Local variable debugging information

—help Prints a synopsis of standard options.

05 March 2002 2

javac(1) javac(1)

—-nowarn
Disables warning messages.

—source release
Enables support for compiling source code containing assertions.

When release is set to 1.4, the compiler accepts code containing assertions. Assertions were intro-
duced in J2SE 1.4.

When release is set to 1.3, the compiler does not support assertions. The compiler defaults to the
1.3-behavior if the —source flag is not used.

—sourcepath sourcepath
Specifies the source code path to search for class or interface definitions. As with the user class
path, source path entries are separated by colons (:) and can be directories, JAR archives, or ZIP
archives. If packages are used, the local path name within the directory or archive must reflect the
package name.

Note that classes found through the classpath are subject to automatic recompilation if their
sources are found.

-verbose
Verbose output. This includes information about each class loaded and each source file compiled.

Cross-Compilation Options
By default, classes are compiled against the bootstrap and extension classes of the JDK that javac shipped
with. But javac also supports cross-compiling, where classes are compiled against a bootstrap and exten-
sion classes of a different Java platform implementation. It is important to use —bootclasspath and
—extdirs when cross-compiling; see Cross-Compilation Example below.

—bootclasspath bootclasspath
Cross-compiles against the specified set of boot classes. As with the user class path, boot class
path entries are separated by colons (:) and can be directories, JAR archives, or ZIP archives.

—extdirs directories
Cross-compiles against the specified extension directories. Directories are a colon-separated list
of directories. Each JAR archive in the specified directories is searched for class files.

—target version
Generates class files that will work on VMs with the specified version. The default is to generate
class files to be compatible with 1.2 VMs, with one exception. When the —source 1.4 option is
used, the default target is 1.4. The versions supported are:

1.1 Ensures that generated class files will be compatible with 1.1 and 1.2 VMs.

1.2 Generates class files that will run on 1.2 VMs, but will not run on 1.1 VMs. This is the
default.

1.3 Generates class files that run on VMs in the Java 2 SDK, v1.3 and later, but will not run

onl.1orl.2VMs.
14 Generates class files that are compatible only with 1.4 VMs.

Non-Standard Options
-Joption
Passes option to the java launcher called by javac. For example, —J-Xms48m sets the startup
memory to 48 megabytes. Although it does not begin with =X, it is not a ‘standard option’ of
javac. It is a common convention for —J to pass options to the underlying VM executing applica-
tions written in Java.

Note that CLASSPATH, —classpath, —bootclasspath, and —extdirs do not specify the classes used
to run javac. Fiddling with the implementation of the compiler in this way is usually pointless and
always risky. If you do need to do this, use the —J option to pass through options to the underlying
java launcher.

05 March 2002 3

javac(1) javac(1)

-X Displays information about non-standard options and exit.

—-Xstdout filename
Send compiler messages to the named file. By default, compiler messages go to System.err.

—-Xswitchcheck
Checks switch blocks for fall-through cases and provides a warning message for any that are
found. Fall-through cases are cases in a switch block, other than the last case in the block, whose
code does not include a break statement, allowing code execution to "fall through™ from that case
to the next case. For example, the code following the case 1 label in this switch block does not
contain a break statement:

switch (x) {
case 1:
System.out.printin(*1");
/I No break; statement here.
case 2:
System.out.printin(*2");
}

If the —Xswtichcheck flag were used when compiling this code, the compiler would emit a warn-
ing about "possible fall-through into case," along with the line number of the case in question.

COMMAND LINE ARGUMENT FILES

To shorten or simplify the javac command line, you can specify one or more files that themselves contain
arguments to the javac command. This enables you to create javac commands of any length on any operat-
ing system.

An argument file can include javac options and source filenames in any combination. The arguments
within a file can be space-separated or newline-separated. Filenames within an argument file are relative to
the current directory, not the location of the argument file. Wildcards (*) are not allowed in these lists (such
as for specifying *.java). Use of the @ character to recursively interpret files is not supported.

When executing javac, pass in the path and name of each argument file with the @ leading character. When
javac encounters an argument beginning with the character @, it expands the contents of that file into the
argument list.

Example - Single Arg File
You could use a single argument file named argfile to hold all javac arguments:

C:> javac @argfile
This argument file could contain the contents of both files shown in the next example.

Example - Two Arg Files
You can create two argument files -- one for the javac options and the other for the source filenames:
(Notice the following lists have no line-continuation characters.)

Create a file named options containing:

—d classes
-9
—sourcepath \java\pubs\ws\1.3\src\share\classes

Create a file named
classes containing:

MyClassl.java
MyClass2.java
MyClass3.java

You would then run javac with:
C:> javac @options @classes

05 March 2002 4

javac(1) javac(1)

Example - Arg Files with Paths
The argument files can have paths, but any filenames inside the files are relative to the current
working directory (not pathl or path2):

C:> javac @pathl\options @path2\classes

EXAMPLES

Compiling a Simple Program
One source file, Hello.java, defines a class called greetings.Hello. The greetings directory is the package
directory both for the source file and the class file and is off the current directory. This allows us to use the
default user class path. It also makes it unnecessary to specify a separate destination directory with —d.

example%o Is
greetings/

example%o Is greetings
Hello.java

example%o cat greetings/Hello.java
package greetings;

public class Hello {
public static void main(String[] args) {
for (int i=0; i < args.length; i++) {
System.out.printin(**Hello ** + args[i]);
}
}
}

example% javac greetings/Hello.java
example%o Is greetings
Hello.class Hello.java
example% java greetings.Hello World Universe Everyone
Hello World
Hello Universe
Hello Everyone

Compiling Multiple Source Files
This example compiles all the source files in the package greetings.

example%o Is

greetings/

example%o Is greetings

Aloha.java GutenTag.java Hello.java Hi.java
example% javac greetings/*.java

example%o Is greetings

Aloha.class GutenTag.class Hello.class Hi.class
Aloha.java GutenTag.java Hello.java Hi.java

Specifying a User Class Path
Having changed one of the source files in the previous example, we recompile it:

example% pwd
lexamples
example% javac greetings/Hi.java

Since greetings.Hi refers to other classes in the greetings package, the compiler needs to find these other
classes. The example above works, because our default user class path happens to be the directory contain-
ing the package directory. But suppose we want to recompile this file and not worry about which directory
we’re in? Then we need to add /examples to the user class path. We can do this by setting CLASSPATH,
but here we’ll use the —classpath option.

05 March 2002 5

javac(1) javac(1)

example% javac —classpath \examples /examples/greetings/Hi.java

If we change greetings.Hi again, to use a banner utility, that utility also needs to be accessible through the
user class path.

example% javac —classpath /examples:/lib/Banners.jar \
/examples/greetings/Hi.java

To execute a class in greetings, we need access both to greetings and to the classes it uses.
example% java —classpath /examples:/lib/Banners.jar greetings.Hi

Separating Source Files and Class Files
It often makes sense to keep source files and class files in separate directories, especially on large projects.
We use —d to indicate the separate class file destination. Since the source files are not in the user class path,
we use —sourcepath to help the compiler find them.

example%o Is
classes/ lib/ src/
example%b Is src
farewells/
example%o Is src/farewells
Base.java GoodBye.java
example%o Is lib
Banners.jar
example%o Is classes
example% javac —sourcepath src —classpath classes:lib/Banners.jar \
src/farewells/GoodBye.java —d classes
example%o Is classes
farewells/
example%o Is classes/farewells
Base.class GoodBye.class

Note that the compiler compiled src/farewells/Base.java, even though we didn’t specify it on the command
line. To trace automatic compiles, use the —verbose option.

Cross-Compilation Example
Here we use the JDK 1.2 javac to compile code that will run ona 1.1 VM.

example% javac —target 1.1 —bootclasspath jdk1.1.7/lib/classes.zip \
—extdirs """ OldCode.java

The —target 1.1 option ensures that the generated class files will be compatible with 1.1 VMs. In JDK1.2,
javac compiles for 1.1 by default, so this option is not strictly required. However, it is good form because
other compilers may have other defaults.

The JDK 1.2 javac would also by default compile against its own 1.2 bootstrap classes, so we need to tell
javac to compile against JDK 1.1 bootstrap classes instead. We do this with —bootclasspath and —extdirs.
Failing to do this might allow compilation against a 1.2 API that would not be present on a 1.1 VM and fail
at runtime.

05 March 2002 6

javac(l) javac(1)

SEE ALSO
jar(1), java(l), javadoc(1), javah(1), javap(1), jdb(1)

See or search the Java web site for the following:

The Java Extensions M echanism @
http://java.sun.com/j2se/1.4/docs/gui de/extensiong/index.html

05 March 2002 7

