java(1)

NAME

java(1)

java — Java interpreter

SYNOPSIS

java [options] class [argument ...]

java [options] —jar file.jar [argument ...]

PARAMETERS

Options may be in any order. For a discussion of parameters which apply to a specific option, see
OPTIONS below.

options Command-line options. See OPTIONS below.
class Name of the class to be invoked.
file.jar Name of the jar file to be invoked. Used only with the —jar option.

DESCRIPTION

The java utility launches a Java application. It does this by starting a Java runtime environment, loading a
specified class, and invoking that class’s main method. The method must have the following signature:

public static void main(String args[])

The method must be declared public and static, it must not return any value, and it must accept a String
array as a parameter. By default, the first non-option argument is the name of the class to be invoked. A
fully-qualified class name should be used. If the —jar option is specified, the first non-option argument is
the name of a JAR archive containing class and resource files for the application, with the startup class indi-
cated by the Main-Class manifest header.

The Java runtime searches for the startup class, and other classes used, in three sets of locations: the boot-
strap class path, the installed extensions, and the user class path.

Non-option arguments after the class name or JAR file name are passed to the main function.

OPTIONS

The launcher has a set of standard options that are supported on the current runtime environment and will
be supported in future releases. However, options below that are described as having been replaced by
another one are obsolete and may be removed in a future release. An additional set of non-standard options
are specific to the current virtual machine implementation and are subject to change in the future. Non-
standard options begin with —X.

Standard Options

—client Selects the Java HotSpot Client VM. This is the default.
-server Selects the Java HotSpot Server VM.

—classpath classpath

—cp classpath Specifies a list of directories, JAR archives, and ZIP archives to search for class
files. Class path entries are separated by colons (:). Specifying —classpath or —cp
overrides any setting of the CLASSPATH environment variable.

Used with java, the —classpath or —cp options only specify the class path for user
classes. Used with —classpath or —cp specify the class path for both user classes
and bootstrap classes.

If —classpath and —cp are not used and CLASSPATH is not set, the user class path
consists of the current directory (.).

—debug This has been replaced by —Xdebug.
-D property=value Sets a system property value.
—enableassertions :<package name>... |:<class name>

23 Apr 2001 1

java(1)

java(1)

—ea :<package name>... |:<class name>

Enable assertions. Assertions are disabled by default.

With no arguments, enableassertions or —ea enable assertions. With one argument
ending in "...", the switch enables assertions in the specified package and any sub-
packages. If the argument is simply "...", the switch enables assertions in the
unnamed package in the current working directory. With one argument not ending

in "...", the switch enables assertions in the specified class.

If a single command line contains multiple instances of these switches, they are
processed in order before loading any classes. So, for example, to run a program
with assertions enabled only in packagecom.wombat.fruitbat (and any subpack-
ages), the following command could be used:

java -ea:com.wombat.fruitbat... <Main Class>

The —enableassertions and —ea switches apply to all s loaders and to system
classes (which do not have a class loader). There is one exception to this rule: in
their no-argument form, the switches do not apply to system. This makes it easy
to turn on asserts in all classes except for system classes. A separate switch is pro-
vided to enable asserts in all system classes; see —enablesystemassertions below.

—disableassertions :<package name>... |:<class;
—da :<package name>... |:<class name>

Disable assertions. This is the default.

With no arguments, disableassertions or —da disables assertions. With one argu-
ment ending in "...", the switch disables assertions in the specified package and
any subpackages. If the argument is simply "...", the switch disables assertions in
the unnamed package in the rent working directory. With one argument not ending

in "...", the switch disables assertions in the specified class.

To run a program with assertions enabled in package com.wombat.fruitbat but
disabled in class com.wombat.fruitbat.Brickbat, the following command could
be used:

java -ea:com.wombat.fruitbat... -da:com.wombat.fruitbat.Brickbat <Main Class>

The —disableassertions and —da switches apply to all ss loaders and to system
classes (which do not have a class loader). There is one exception to this rule: in
their no-argument form, the switches do not apply to system. This makes it easy to
turn on asserts in all classes except for system classes. A separate switch is pro-
vided to enable asserts in all system classes; see —disablesystemassertions below.

—enablesystemassertions

—€esa

Enable asserts in all system classes (sets the default assertion status for system
classes to true).

—disablesystemassertions

—dsa

—jar

—noclassgc

Disables asserts in all system classes

Executes a program encapsulated in a JAR archive. The first argument is the name
of a JAR file instead of a startup class name. In order for this option to work, the
manifest of the JAR file must contain a line of the form Main-Class:classname.
Here, classname identifies the class having the public static void main(String[]
args) method that serves as your application’s starting point. See the Jar tool ref-
erence page and the Jar trail of the Java Tutorial for information about working
with Jar files and Jar-file manifests. When you use this option, the JAR file is the
source of all user classes, and other user class path settings are ignored.

This has been replaced by —Xnoclassgc.

23 Apr 2001 2

java(1)

Non-

-msn
-mxn

-ssn

—-verbose
—verbose:class

-verbosegc
-verbose:gc

-verbose:jni

—version
—showversion
=?

—help

-X

Standard Options

-Xint

java(1)

This has been replaced by —Xms n.
This has been replaced by —Xmx n.
This has been replaced by —Xss n.

Displays information about each class loaded.
This has been replaced by —verbose:gc.
Reports on each garbage collection event.

Reports information about use of native methods and other Java Native Interface
activity.

Displays version information and exit.

Displays version information and continues.

Displays usage information and exit.

Displays information about non-standard options and exit.

Operates in interpreted-only mode. Compilation to native code is disabled, and all
bytecodes are executed by the interpreter. The performance benefits offered by the
Java HotSpot VMs’ adaptive compiler will not be present in this mode.

—Xbootclasspath:bootclasspath

Specifies a colon-separated list of directories, JAR archives, and ZIP archives to
search for boot class files. These are used in place of the boot class files included
in the Java 2 SDK and Java 2 Runtime Environment.

—Xbootclasspath/a: path

Specifies a colon-separated path of directories, JAR archives, and ZIP archives to
append to the default bootstrap class path.

—Xbootclasspath/p: path

—Xcheck:jni

—Xdebug
—Xcheck:jni
—Xfuture

—Xnoclassgc

Specifies a colon-separated path of directories, JAR archives, and ZIP archives to
prepend in front of the default bootstrap class path. Note: Applications that use
this option for the purpose of overriding a class in rt.jar should not be deployed,
as doing so would contravene the Java 2 Runtime Environment binary code
license.

Perform additional checks for Java Native Interface (JNI) functions. Specifically,
the Java Virtual Machine validates the parameters passed to the JNI function as
well as the runtime environment data before processing the JNI request. Any
invalid data encountered indicates a problem in the native code, and the Java Vir-
tual Machine will terminate with a fatal error in such cases. Expect a performance
degradation when this option is used.

Starts with the debugger enabled.
Perform additional check for Java Native Interface functions.

Performs strict class-file format checks. For purposes of backwards compatibility,
the default format checks performed by the Java 2 SDK’s virtual machine are no
stricter than the checks performed by 1.1.x versions of the JDK software. The
—Xfuture flag turns on stricter class-file format checks that enforce closer confor-
mance to the class-file format specification. Developers are encouraged to use this
flag when developing new code because the stricter checks will become the default
in future releases of the Java application launcher.

Disables class garbage collection

23 Apr 2001 3

java(1)

—-Xincgc

—Xloggc: file

-Xmsn

=Xmxn

—Xprof

java(1)

Enable the incremental garbage collector. The incremental garbage collector,
which is off by default, will eliminate occasional garbage-collection pauses during
program execution. However, it can lead to a roughly 10% decrease in overall GC
performance.

Report on each garbage collection event, as with —verbose:gc, but log this data to
file . In addition to the information —verbose:gc gives, each reported event will be
preceeded by the time (in seconds) since the first garbage-collection event.

Always use a local file system for storage of this file to avoid stalling the JVM due
to network latency. The file may be truncated in the case of a full file system and
logging will continue on the truncated file. This option overrides —verbose:gc if
both are given on the command line.

Specifies the initial size of the memory allocation pool. This value must be greater
than 1000. To modify the meaning of n, append either the letter k for kilobytes or
the letter m for megabytes. The default value is 2m.

Specifies the maximum size of the memory allocation pool. This value must be
greater than 1000. To modify the meaning of n, append either the letter k for kilo-
bytes or the letter m for megabytes. The default value is 64m. The uppoer limit
for this value will be approximately 4000m on SPARC platforms and 2000m on
x86 platforms, minus overhead amounts.

Profiles the running program, and sends profiling data to standard output. This
option is provided as a utility that is useful in program development and is not
intended to be be used in production systems.

—Xrunhprof[:help][:suboption=value,...]

-Xssn

-Xrs

Enables cpu, heap, or monitor profiling. This option is typically followed by a list
of comma-separated suboption=value pairs. Run the command java —Xrunh-
prof:help to obtain a list of suboptions and their default values.

Each Java thread has two stacks: one for Java code and one for C code. The —Xss
option sets the maximum stack size that can be used by C code in a thread to n.
Every thread that is spawned during the execution of the program passed to java
has n as its C stack size. The default units for n are bytes and n must be > 1000
bytes.

To modify the meaning of n, append either the letter k for kilobytes or the letter m
for megabytes. The default stack size is determined by the Linux operating system
upon which the Java platform is running.

Reduce usage of operating-system signals by Java virtual machine (JVM).

Sun’s JVM catches signals to implement shutdown hooks for abnormal JVM ter-
mination. The JVM uses SIGHUP, SIGINT, and SIGTERM to initiate the running
of shutdown hooks. The JVM uses SIGQUIT to perform thread dumps.

Applications that embed the JVM frequently need to trap signals like SIGINT or
SIGTERM, and in such cases there is the possibility of interference between the
applications’ signal handlers and the JVM shutdown-hooks facility.

To avoid such interference, the —Xrs option can be used to turn off the JVM shut-
down-hooks feature. When —Xrs is used, the signal masks for SIGINT,
SIGTERM, SIGHUP, and SIGQUIT are not changed by the JVM, and signal han-
dlers for these signals are not installed.

ENVIRONMENT VARIABLES

CLASSPATH

Used to provide the system with a path to user-defined classes. Directories are
separated by colons. For example:

23 Apr 2001 4

java(1) java(1)

..lhome/avh/classes:/usr/local/java/classes
SEE ALSO
javac(1), jdb(2), javac(l), jar(1), set(1)
See (or search java.sun.com) for the following:

JDK File Structure @
http://java.sun.com/j2se/1.4/docs/tooldocs/linux/jdkfiles.html

JAR Files @
http://java.sun.com/docs/books/tutorial/jar/

NOTES
All the —X options are unstable. As noted in the OPTIONS section, some of the "standard" options are
obsolete.

23 Apr 2001 5

