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We propose some simple models of the growth of social networks, based on three general principles:
(1) meetings take place between pairs of individuals at a rate which is high if a pair has one or
more mutual friends and low otherwise; (2) acquaintances between pairs of individuals who rarely
meet decay over time; (3) there is an upper limit on the number of friendships an individual can
maintain. Using computer simulations, we find that models that incorporate all of these features
reproduce many of the features of real social networks, including high levels of clustering or network
transitivity and strong community structure in which individuals have more links to others within
their community than to individuals from other communities.

I. INTRODUCTION

Many real-world systems take the form of networks—
nodes or “vertices” joined together by links or “edges.”
Commonly cited examples include communication net-
works such as the Internet or the telephone network, in-
formation networks such as the World-Wide Web, trans-
portation networks such as airline routes or roads, distri-
bution networks such as the movements of delivery trucks
or the blood vessels of the body, and other naturally oc-
curring networks such as food webs or metabolic net-
works. In the last few years there has been a substan-
tial amount of interest in network structure and function
within the physics community; see Refs. [1–3] for reviews.
In particular, it turns out that many of the techniques
of statistical physics, such as scaling and renormalization
group methods, Monte Carlo simulation, and mean-field
theory, are well suited to the study of these systems.

One specific question which has received a large
amount of attention in the physics literature concerns
the structure of networks which are evolving over time.
While many networks, such as metabolic networks or
blood vessels, are fundamentally static and do not change
their topology, many others change substantially over
time. The classic example is the World-Wide Web. The
vertices in this network are Web pages and the (directed)
edges between them are hyperlinks from one page to an-
other. This network is certainly changing; pages are
added to the Web at a rate of over a million pages a
day, according to some estimates, while other pages dis-
appear. It is widely believed that the rapid growth of
the Web leaves a highly distinctive signature in the re-
sulting network, including such characteristic features as
power-law degree distributions [4,5], correlations between
degree and age of vertices [6], and correlations between
degrees of connected vertices [7,8]. A number of models
of the growing Web have been proposed, which convinc-
ingly reproduce some or all of these features [6–11].

The Web however was not the first type of network to
catch the eye of the physics community. In a seminal pa-
per in 1998, Watts and Strogatz [12] discussed a number

of features of social networks—networks of acquaintance
between people, for instance—and introduced a simple
model of a (static) social network, which has since been
analyzed in depth in the physics literature [1,13–17]. So-
cial networks also evolve, with new acquaintances form-
ing between individuals, and old ones decaying. However,
it is clear that the evolution of a social network is gov-
erned by very different processes from those that govern
the evolution of the World-Wide Web. In this paper, we
propose some new models of the evolution of social net-
works. In the same spirit as the highly successful models
of Web growth (and indeed of most of statistical physics),
these models are based on simple stochastic processes
and do not attempt to capture the microscopic details
of social dynamics. As we will see however, a number
of non-trivial but intuitively reasonable results emerge
from these models, including the formation of closely-knit
communities within the network, and the development of
a high degree of network transitivity, as we now describe.

II. MECHANISMS OF SOCIAL NETWORK

GROWTH

The key elements in previous network growth models,
such as models of the growth of the World-Wide Web, are
(1) continual addition of both vertices and edges to the
network as time passes and (2) preferential attachment,
meaning that edges are more likely to connect to vertices
of high degree than to ones of low degree. (The degree
of a vertex is the number of other vertices to which it is
connected.) Other features, such as removal of vertices
or edges, or movement of edges to new positions in the
network, can also be incorporated [18], but the crucial
features of power-law degree distributions and correla-
tions between vertex degrees are reproduced with only
the elements 1 and 2 above.

Growth models of this type are, as mentioned above,
quite inappropriate as models of the growth of social net-
works, for a number of reasons, as follows.
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1. New vertices are of course added to social networks
all the time: people are born and people travel
around joining new networks and leaving old ones.
However, the timescale on which people make and
break social connections, which can be as short as
hours or days, is much shorter than the timescale
on which vertices join or leave the network, which
is typically some years. For this reason, we expect
that the addition and removal of vertices will not
be a major factor determining the instantaneous
structure of social networks, and to a first approxi-
mation these networks can therefore be treated us-
ing a model with a constant number of vertices but
a varying number and arrangement of edges. This
is in sharp contrast to models of Web growth.

2. The degree distribution of many acquaintance net-
works does not appear to follow a power-law distri-
bution, as the degree distribution of the Web does.
Instead the distribution appears to be strongly
peaked around a certain mean degree (whose value
depends on what definition of acquaintance one
adopts) and is not noticeably right-skewed [19,20].
The typical explanation for this result is that there
is a recurring cost in terms of time and effort
to maintaining a friendship, and given limited re-
sources people can only maintain a certain num-
ber of them. Indeed, in cases of networks in which
there is little cost, or only a one-time cost, to in-
creasing one’s degree, e.g., in networks of sexual
contacts [21], highly skewed and possibly power-
law degree distributions are seen. In our work, we
have assumed, as is usually the case, that there are
costs to friendship, and hence vertex degrees are
narrowly distributed.

3. The lack of a power-law degree distribution in ac-
quaintance networks also suggests that the prefer-
ential attachment mechanism is not an important
one. Since most people have about the same num-
ber of friends, it makes little difference whether
people with more friends attract new ones at a
higher rate.

4. Lastly, and perhaps most importantly, social net-
works show “clustering,” also called “transitivity”
in the sociological literature. Clustering is the
propensity for two of one’s friends to be friends
also of each other, and is very common in social
networks. Growth models of the Web show weak
clustering—the probability C that two neighbors of
a given vertex will be neighbors also of one another,
also called the clustering coefficient, is greater by
a factor of about five than in the corresponding
baseline network, a random graph in which edges
are assigned to vertices completely at random [3].
However, in social networks C can be thousands or
millions of times greater than in the correspond-
ing random graph [12,22]. The importance of this

result has been emphasized extensively in the lit-
erature [23], and certainly any reasonable model of
social network growth should incorporate it.

Taking each of these points into account, we propose
the following as a minimal set of features that a model
of social network evolution should have.

1. Fixed number of vertices: we consider a closed pop-
ulation of fixed size.

2. Limited degree: the probability of a person devel-
oping a new acquaintance should fall off sharply
once their current number of friends reaches a cer-
tain level.

3. Clustering: the probability of two people becom-
ing acquainted should be significantly higher if they
have one or more mutual friends.

4. Decay of friendships: Given that the number of ver-
tices is fixed, and the degree is limited, friendships
must be broken as well as made if the evolution of
the network is not to stagnate.

In the following sections we propose and study two mod-
els which have these properties. The first model is quite
general in its formulation, allowing for arbitrary func-
tional forms representing people’s propensity to form
friendships. This model makes a reasonable stab at
realism in its representation of network evolution, but
turns out to be cumbersome to simulate and analyti-
cally intractable. So we also propose a second model,
a much simplified version of the first, which reproduces
the characteristic features of the first model, albeit in
stylized form, and which can be simulated with consid-
erably greater efficiency. This second model is similar in
its level of sophistication to the previously studied mod-
els of growth of the Web and other networks, and may
be similarly amenable to analytic treatment, although we
have not attempted an analytic treatment here.

III. MODEL I

We consider the following mechanism for the growth of
social networks. Pairs of individuals meet with a proba-
bility per unit time which depends on how many mutual
friends they have. If they have no mutual friends, then
there is only a very small chance of their meeting, but
if a pair have a friend in common, then their chance of
meeting is increased substantially. In the particular case
of networks of collaboration between scientists, the ex-
istence of this effect has been verified by direct empiri-
cal measurement [24]. The presumed mechanism which
drives it is a social one: people often introduce pairs of
their friends to one another, either deliberately, or simply
by virtue of bringing them together in the same place.

We also place a limit on the number z of friends that
people can have by arranging for the probability of their
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forming new friendships to fall off beyond some cutoff
point z∗.

If only these two mechanisms were in place, we would
get a network which would grow until all or most peo-
ple had about z∗ friends, and then stop growing. The
structure of the community would not change after its
initial formation. In fact, Watts [23] has described just
such a model, his “α-model,” in which a hard upper limit
is placed on the number of acquaintances an individual
can have, and the model does indeed stop evolving once
everyone has this many. In the real world, however, so-
cial networks do not stop evolving. Although there really
does appear to be an upper limit to the numbers of peo-
ple’s friends, the network continues to change because
friendships are broken as well as made. To account for
this, we propose an obvious mechanism: we propose that
even after a pair of people become acquainted, they still
need to meet regularly in order to maintain that acquain-
tance. If they cease meeting, their acquaintance ceases as
well. (Many people say that they have friends they rarely
see but with whom they nonetheless remain acquainted.
We discount such friendships from our model, since there
is essentially no cost to such a friendship, and hence it
does not fall under the influence of our upper limit on
friendship number.)

Thus our model has three components: (1) friendships
form when people meet, which happens preferentially be-
tween pairs of people who have one or more mutual ac-
quaintances; (2) the number of a person’s friendships is
limited; (3) friendships decay and disappear if the two
people in question do not meet in a regular basis. In
detail we implement these components as follows.

The probability per unit time pij of a given two peo-
ple, i and j, meeting depends on two factors: (1) the
number of friends zi and zj each person already has and
(2) the number mij of mutual friends shared by both.
We represent these factors by functions f and g thus:

pij = f(zi)f(zj)g(mij). (1)

The function f(z) is presumably large and roughly con-
stant for small z, but falls off sharply around the tran-
sition value z∗. One possible functional form with these
properties is the Fermi function:

f(zi) =
1

eβ(zi−z∗) + 1
, (2)

and we have used this form for the simulations described
here. The temperature-like parameter β controls the
sharpness of the fall-off at z∗.

The function g(m) represents the expected increase in
the likelihood that two people will meet if they have one
or more mutual friends. In recent studies of collaboration
networks [24] this function was measured directly, and
found to be well fit by the simple exponential form:

g(m) = 1 − (1 − p0)e
−αm, (3)

where p0 represents the probability of a chance meeting
between two people with no mutual acquaintances and
the parameter α controls the rate at which g(mij) in-
creases.

The forms for f and g chosen here are somewhat ad

hoc, but we have experimented with other forms and
found the qualitative predictions of the model to be the
same. Amongst other things, this provides some justi-
fication for the simpler model presented in Section IV,
which does not contain arbitrary functions of this sort.

And what happens once two people meet? Friendships
do not merely exist or not exist: we have friends whom
we see every week, once a month, or whom we gradually
lose touch with. We represent this in our model by giving
each friendship a strength. When two people i and j
meet, the strength sij of the connection between them is
set to 1. Then as time passes and they do not meet again
the strength decays exponentially sij = e−κ∆t, where ∆t

is the time since they last met and κ is an adjustable
parameter of the model. If they do meet again, sij is
set back to 1. Thus the time averaged strength of a
connection is measure of how often people meet.

For the purposes of constructing pictures of our net-
works, we normally place a threshold on the connections,
and consider only those whose strength is greater than
that threshold to be active friendships. For the figures
in the following section the threshold value used was 0.3.
The same criterion is used for counting numbers of mu-
tual friends and for calculating clustering coefficients.

A. Results

We have simulated the model described in the previous
section for networks of up to 1000 vertices. In order to
pick pairs of individuals with the correct probability per
unit time, Eq. (1), we use a continuous-time Monte Carlo
method (also called an “n-fold way” algorithm) [25]. Sim-
ulations can be initialized in a variety of ways: one can
for example start with a random graph in which each ver-
tex has average degree z∗. In our simulations, we started
with an empty network, having no edges, and then al-
lowed edges to appear with the decay parameter κ set
to zero, or a very small value. After each individual has
formed about z∗ friendships, the evolution of the net-
work then stagnates because no more edges can be either
added or removed. At this point we set κ to a larger,
more realistic value and watch the subsequent evolution
of the network. Statistics such as the clustering coeffi-
cient C and the average path length are measured as a
function of time.

Figure 1 shows a snapshot of the network from a sim-
ulation with N = 250 vertices with κ = 0.01, β = 5, and
z∗ = 5. There are a number of interesting features of
this network. First, it has a high clustering coefficient
of C ' 0.45. The clustering coefficient for a random
graph of the same size and number of edges is roughly
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FIG. 1. Sample network generated by model I. In this sim-
ulation there where N = 250 vertices, and κ = 0.01, β = 5.
During the course of the simulation the isolated components
did not join the main component.

z∗

N
= 0.02. Thus our model clearly reproduces the strong

clustering of real social networks. This however is no
great surprise; the primary mechanism of network evolu-
tion in the model—the meeting of pairs of people with
high numbers of mutual friends—is clearly geared pre-
cisely towards creating such strong clustering. Nonethe-
less, our results provide a demonstration that such mech-
anisms can produce clustering in social networks.

A less trivial outcome which emerges from our model is
the formation of clearly defined communities. As Fig. (1)
shows, there are groupings of vertices in the network
among which there is a high density of connections, and
between which there are few connections. Most of these
communities are joined together in one large connected
component, but there are also a small number of com-
munities which have no connection with the main body
of the graph (although as we will see shortly, the exis-
tence of such islands depends on the precise choice of the
parameters in the model).

One way to examine the community structure quan-
titatively is to assign a “connection strength” to every
pair of vertices in the network and then examine the
component structure of the graph as edges are added be-
tween vertex pairs in order of decreasing strength, start-
ing from a graph with no edges. Here we use this method
with a connection strength which is a weighted sum of
the number of different paths through the network be-
tween vertex pairs, with shorter paths weighted more
heavily than longer ones [26]. (The paths we consider

need not be node- or edge-independent, although con-
nection strengths based on node-independent paths have
been considered elsewhere [27].) To visualize the commu-
nity structure extracted by this calculation, we draw a
hierarchical tree showing the order in which components
form and are joined together. Such trees have been used
widely in social network analysis, where they are some-
times called “dendrograms” [28,29], and occasionally in
physics too [30].

Figure 2 shows the hierarchical tree for a network gen-
erated by our model with parameters as in Fig. 1. The
tree reveals strong community structure in the network:
substantial connected components appear early in the
clustering process (lower down in the tree) and persist
until late (higher up). By contrast, a typical hierarchical
tree for a random graph shows a few small components
forming early in the process but these quickly combine
into one giant component, with subsequent edges only
serving to connect individual nodes to the giant compo-
nent. The strong communities seen in Fig. 2 are absent
in the random graph.

The formation of communities is of course seen in real-
world social networks but was not a specific design fea-
ture of our model. We can however explain it in terms of
the model’s dynamics as follows. If, during the growth of
our network, a region forms in which there is a higher
than average density of connections between vertices,
then there will also be more pairs of vertices in that
region which have common acquaintances. Hence, new
friendships will preferentially form between those pairs
and so the density of connections in the region will be-
come higher still. Thus small initial fluctuations in net-
work density can form the seeds for the growth of tightly
connected communities.

Furthermore, communities in our model are self-
sustaining structures. Within communities many pairs
of people necessarily have mutual friends, and the com-
munities thus contain a high density of “triangles” of
friendship. (The clustering coefficient can in fact be de-
fined precisely as a measure of the density of such trian-
gles [31].) A triangle is a self-sustaining structure in our
model. Each pair of vertices in a triangle has a mutual
neighbor in the third vertex, and as a result meetings
between each pair take place at a much higher rate than
between randomly chosen pairs of vertices in the graph.
Thus the strength of the connection between each pair of
vertices is repeatedly reinforced. This means that edges
within a community have a greater lifetime on average
than those between communities—the community struc-
ture is both created by mutual friendships and helps to
sustain them.

B. Other behaviors of the model

The behavior described above is typical of a large re-
gion of the parameter space of this first model. However,
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FIG. 2. The hierarchical tree or dendrogram showing community structure for a network with N = 250, κ = 0.01, β = 5,
calculated as described in the text. In this case, we have designated separate communities by whether their lowest connecting
path in the tree falls above or below a specified threshold, indicated by the horizontal dotted line, and the components have
been spaced out and colored to illustrate this designation. The threshold value is chosen using a criterion based on the density
of edges within components as described in Ref. [26].

for extreme values of the parameters other behaviors are
seen, most of them rather unlike the behaviors of real
social networks.

Consider, for instance, the extreme cases where the
decay rate κ is either very slow or very fast. Figure 3
shows the time evolution of the clustering coefficient C
for simulations with κ = 0.001 and κ = 20. With an ex-
tremely slow decay (top panel in the figure), established
connections decay very little before being reinforced by
a repeat “meeting” of the two corresponding vertices.
Thus connections rarely disappear once established, and
the evolution of the network stagnates. We still get a
high clustering coefficient, as the figure shows, but it has
almost no fluctuation with time, because the topology of
the network is not changing. This roughly reproduces the
behavior of Watts’ α-model [23]. At the other extreme,
very rapid decay of connections prevents the formation
of any lasting friendships, producing a network which is
essentially a random graph with no clustering or commu-
nity structure (lower panel in Fig. 3).

Between these two extremes variation of the parame-
ters produces slight variations on the basic behavior dis-
cussed in Section III A. In Fig. 1, for example, we saw
the formation of well connected communities, some of
which could be isolated from the rest of the graph. The
length of time for which this isolation persists depends on
the decay parameter κ as well as the parameter p0 which

governs the probability of a chance meeting between two
people with no common acquaintances. If κ is increased,
then friendships decay more quickly, leaving some ver-
tices with room for an extra edge. And if p0 is sufficiently
high, then edges will occasionally be formed between two
isolated components of the graph. Once one such edge
forms, there exist other pairs of vertices in the two com-
ponents which have a common neighbor, and hence more
edges will quickly form between the components. In other
words, once a single friendship forms between different
communities, others usually follow. Note however that,
as we saw above, higher decay rate κ leads to a lower clus-
tering coefficient, and in fact the decrease in the cluster-
ing coefficient can be seen as clear “steps” when different
communities in the graph merge (see Fig. 4). Thus it ap-
pears that communities which are less tightly connected
internally (lower C) allow for new connections to appear
more easily between separate communities.

We can also vary the value of the temperature parame-
ter β. Decreasing β allows a vertex more flexibility about
its degree—it can add an extra edge more easily. If β is
decreased while keeping the other parameters fixed, we
find that the basic community structure of the graph re-
mains roughly constant, as does the clustering coefficient,
but the pattern of connections within communities is con-
tinually changing. New edges are added to vertices occa-
sionally, and edges are removed to bring the mean degree
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FIG. 3. Clustering coefficient as a function of time for
κ = 0.001 (top) and κ = 20 (bottom). In the former case
the clustering coefficient is high, but hardly fluctuates, since
the network topology is almost constant. In the latter case,
there is much fluctuation, but the value of C rarely rise above
that for a random graph of the same size and edge density.
(C would take the value 0.019 in the random graph.

back to about z∗. But the edges which are removed are
not necessarily the same ones that were added. In Fig. 5
we show how the pattern of edges evolved in one such
community during one of our simulations. This simula-
tion seems to mimic a situation in which the exclusivity
of communities is maintained, but the friendships within
those communities are brief and casual, which may be a
reasonable representation of certain types of social orga-
nization.

IV. MODEL II

The model described in the first part of this paper has
many adjustable parameters, as well as the functions f
and g, whose forms are infinitely variable. While a large
number of free parameters allows us a lot of flexibility to
study the behavior of the model and may, in addition,
make the model a more accurate representation of the

0 300 600 900
time
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0.2

0.3

0.4

C

FIG. 4. Clustering coefficient as a function of time for
κ = 0.5, p0 = 0.0001, β = 6.67. The network settles into
distinct groups that seem to be stable until individuals from
separate communities become acquainted, causing two groups
to merge and thus lowering C.

real world, we find in fact that the selection of behaviors
which we get from the model is limited to a few general
classes, as described above. This suggests that it may
be possible to formulate a less baroque model, one whose
definition and dynamics are simpler, and still retain most
of the interesting behavior. In this section we do just this.

Our simplified model incorporates all four of the cru-
cial features outlined in Section II, but in a simplified
fashion as follows. First, all connections between vertices
are only either present or absent—there is no longer any
concept of connection strength. The exponential decay
of connection strength from Section III is replaced by a
constant probability γ per unit time that an existing con-
nection will disappear. Thus out of any initial group of
connections, e−γt of them will remain after time t, in the
absence of any other processes.

Second, “meetings” occur between pairs of individuals
represented by vertices at a rate r which is simply linear
in their number m of mutual friends: r = r0 + r1m. If a
pair meet and there is not already a connection between
them, a new connection is established unless one of them
already has z∗ connections, in which case nothing hap-
pens. In other words, z∗ forms a hard upper limit on the
degree z of any vertex, beyond which no more edges can
be added.

Apart from being conceptually much simpler than our
first model, this model is also much easier to simulate.
Instead of having to use a complicated and inefficient
continuous time simulation method, the model can be
simulated directly using the following algorithm.

Let np = 1
2N(N −1) be the number of pairs of vertices

in the network. Let ne = 1
2

∑
i zi be the number of exist-

ing edges, where zi is the degree of the ith vertex. And
let nm = 1

2

∑
i zi(zi − 1) be the total number of mutual

neighbors of pairs of vertices in the network.
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FIG. 5. Time evolution of the edges within one component for β = 1.25 and κ = 0.01. Dotted lines indicate connections
that existed in the previous frame and have since decayed. Bold lines indicate new connections. All new connections are made
with vertices already included in this group.

1. At each time-step, we choose npr0 pairs of vertices
uniformly at random from the network to meet. If
a pair meet who do not have a pre-existing connec-
tion, and if neither of them already has the maxi-
mum z∗ connections then a new connection is es-
tablished between them.

2. At each time-step, we choose nmr1 vertices at ran-
dom, with probabilities proportional to zi(zi − 1).
For each vertex chosen we randomly choose one pair
of its neighbors to meet, and establish a new con-
nection between them if they do not have a pre-
existing connection and if neither of them already
has the maximum number z∗ of connections.

3. At each time-step, we choose neγ vertices with
probability proportional to zi. For each vertex cho-
sen we choose one of its neighbors uniformly at ran-
dom and delete the connection to that neighbor.

It is straightforward to convince oneself that repetition of
these steps simulates the dynamics of the model proposed
above.

As before, the network is initialized by starting with no
edges, and running the first two steps (addition of con-
nections) without the third (breaking any connections)
until all or most vertices have degree z∗. Then all three
steps are used for the remainder of the simulation.

Figure 6 shows a sample network from a simulation of
this model with N = 250, r0 = 0.0005, r1 = 2 (about
4850 pairs per timestep), γ = 0.005, and z∗ = 5. As with
our first model, there are clearly identifiable communities
in the network, mostly connected together in a single gi-
ant component, although there are also communities that
are well-connected internally but disconnected from the
rest of the graph. The values of γ and r1 were chosen so
that connections based on mutual friendship have some
stability over time: even when they get broken, they are
likely to be remade quickly. This mechanism replaces the

“reinforcement” mechanism of the first model. However,
there is always some possibility that broken links will not
be remade and other links will appear instead, allowing
for evolution of the network structure over time at a rate
dependent on the parameter values. The network shown
in Fig. 6 is also highly clustered, having a clustering co-
efficient of C = 0.53, where the corresponding random
graph would have C = 0.02.

Most of the types of behavior seen in our first model
can be reproduced by appropriate choices of parameter
values in this second model. For example, extremely high
or low values of the decay parameter γ produce either
highly fluctuating structures with clustering not notice-
ably different from that of a random graph, or highly
clustered graphs which are stagnant and barely evolve.
Other parameter changes can affect the stability of the
island communities in the graph over long periods, or
vary the rate at which connection patterns within com-
munities vary.

V. DISCUSSION

What can we learn from results of the type presented
here? The primary lesson is that complex and intuitively
reasonable patterns of social network structure and evo-
lution can emerge from very simple rules. Furthermore,
the general form of those patterns is not strongly influ-
enced by the microscopic details of the rules, so that most
of the interesting behaviors can be reproduced in a much
simplified model which is clearly not a realistic represen-
tation of real-world social behaviors.

The crucial features which we find necessary to pro-
duce plausible networks are three in number: (1) meet-
ings between pairs of individuals, giving rise to friend-
ships, at a rate which is high if a pair has one or more
mutual friends and low otherwise; (2) decay of friend-
ships between pairs of individuals who no longer meet or
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FIG. 6. Network structure generated in a run of our second
model with N = 250, r0 = 0.0005, r1 = 2 (about 4850 pairs
per timestep), γ = 0.005, and z∗ = 5.

rarely do so; (3) an upper limit (either soft or hard) on
the number of friendships an individual can maintain.

These rules are quite different from the rules which
have been used to model the evolution of graphs in other
arenas, such as the evolution of the World-Wide Web.
While the evolution of the Web appears to be dominated
by preferential attachment—vertices with many edges ac-
crue new ones at a higher rate than those with few—
we conjecture that social network growth is dominated
by the introduction of future acquaintances to one an-
other by mutual friends. As a result, almost everything
about the resulting graphs is different between the two
cases. Where preferential attachment yields a graph with
a power-law degree distribution, the limit we place on
vertex degree in our social networks creates a sharply
peaked distribution. Where graphs grown with preferen-
tial attachment show clustering coefficients only slightly
higher than the corresponding random graph, our social
network models show very high clustering coefficients,
similar to those seen in real-world social networks. And
where the structure of the Web and similar networks is

dominated by their rapid growth, the structure of our so-
cial networks is dominated by constant rewiring of con-
nections between existing vertices, with the addition of
new vertices not playing a major role.

But perhaps the most intriguing feature of our models
is that they show community structure in the networks
they generate: there are groups of vertices with many
connections between their members and few connections
to vertices outside the group. For some parameter val-
ues, these communities even separate entirely and there
are no connections between them at all. Community for-
mation is certainly a feature of real social networks also,
and it is interesting to see that communities can arise
from simple local growth rules only. We are not aware of
any study that has shown the existence of such commu-
nities in preferential attachment models. Interestingly,
however, the real World-Wide Web does show commu-
nity structure [32]. Perhaps then a realistic model of the
growth of the Web should include some additional ele-
ments similar to those in our social network models in
order to capture community formation fully.

This paper represents only a first attempt at modeling
the evolution of the structure of social networks. There
are many possible directions for further study. One can
ask whether there are important mechanisms of network
growth which we have missed out of the present models,
or whether even our simplest model is still more com-
plicated than it need be. Perhaps the three basic rules
given here are not all necessary? It would also be useful
to acquire a detailed understanding of how the param-
eters of the models relate to one another—what is the
structure of the phase diagram for these models? And is
an analytic approach to these or similar models possible?
It would be helpful if we could understand the qualita-
tive behaviors seen in our simulations in terms of analytic
calculations, either approximate or exact. We hope that
the first steps taken here will encourage others to look at
these questions in more depth.
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