
CPFG
Version 3.4

User’s Manual

Radom´ır Měch

May 7, 1998

based on the CPFG Version 2.7 User’s Manual by
Mark James

Mark Hammel
Jim Hanan

Radom´ır Měch
Przemyslaw Prusinkiewicz

Contents

1 Introduction 5

2 Machine requirements 5

3 Distribution 5

I Reference 6

4 Command line parameters 6
4.1 General . 6
4.2 Graphics and windowing . 7
4.3 Special working modes . 8
4.4 Output . 9
4.5 Usage examples . 11

5 User interaction 13
5.1 Main menu . 13
5.2 Animation menu . 15

6 Input files 16
6.1 L-system file . 16

6.1.1 Variables . 17
6.1.2 Programming statements . 17
6.1.3 Global programming statements 18
6.1.4 Arrays . 19
6.1.5 Predefined functions . 19
6.1.6 Sub L-systems . 20
6.1.7 Homomorphism . 22
6.1.8 Decomposition. 24
6.1.9 Interpreted symbols . 25

6.2 View file . 34
6.2.1 Setting turtle’s parameters 34
6.2.2 Setting the view. 35
6.2.3 General drawing parameters 36
6.2.4 Lines, surfaces, and generalized cylinders 38
6.2.5 Color-map mode: Colors and lights 39
6.2.6 Material mode: Lights and textures 40
6.2.7 Tropisms . 42

6.3 Animation file . 44
6.4 Other input files. 46

6.4.1 Surface specification file . 46
6.4.2 Contour specification file . 47

1

6.4.3 Tsurface specification file 47
6.4.4 Texture image file . 48
6.4.5 Background scene specification file 49

7 Output files 52
7.1 Rayshade output . 53

7.1.1 Materials . 54
7.1.2 View parameters and lights 54
7.1.3 Bounding box .. 54
7.1.4 Predefined surfaces . .. 55
7.1.5 Instantiated objects . 55
7.1.6 The main object . 55

7.2 Postscript output . 56
7.3 L-system string . 57
7.4 Graphics Library Statements format 57
7.5 Inventor output . 58

8 Communication with environmental process 59
8.1 Open L-systems1 . 59
8.2 Implementation of the modeling framework 62
8.3 Visualization of the environment . 66
8.4 Two process communication . 66

8.4.1 Specification of the communication 66
8.4.2 Environmental process . 68
8.4.3 Data structures . 69
8.4.4 Library functions . 70
8.4.5 Examples . 73
8.4.6 Troubleshooting 77

8.5 Distributed system . 78
8.5.1 Communication library functions 79
8.5.2 Initialization program .. 83
8.5.3 Drawing program . 86

9 Miscellaneous features 88
9.1 Rayshade instantiation . 88
9.2 Sending commands to cpfg through sockets 89

10 Limitations 90
10.1 Using the hardware colormap . 90
10.2 Using cpfg on less than 24-bit screens 91
10.3 Use of symbol # in the L-system file 91
10.4 Transparent objects . 91

1This section is incorporated from [2].

2

11 Things to do 93
11.1 Problems . 93
11.2 Fixes to the manual . 95
11.3 Suggestions for future extensions or improvements. 95

II Examples 98

12 Quadratic Koch island 98
12.1 koch.l . 98
12.2 koch.v . 99

13 Koch snowflake curve 100
13.1 snowflake.l . 100
13.2 snowflake.v . 102

14 Combination of islands and lakes 102
14.1 lakes.l . 102

15 Dragon curve 103
15.1 dragon.l 103

16 Branching structures 105
16.1 plant.l . 105

17 Stochastic L-systems 106
17.1 plants.l . 107

18 Context sensitive L-systems 107
18.1 context.l . 108

19 Parametric L-systems 109
19.1 rowoftrees.l . 110

20 Global variables in parametric L-systems 110
20.1 flake.l . 110

21 Incorporation of predefined surfaces 112
21.1 blossom.l . 112
21.2 blossom.v . 112
21.3 leaf.s . 113
21.4 petal.s . 114

22 More predefined surfaces 115

3

23 Use of sub-L-systems 115
23.1 sedge.l . 115
23.2 female.l . 118

24 L-System defined surfaces 118

25 Other examples 119

References 121

A L-system Input Grammar 122

Index 128

4

1 Introduction

Theplant andf ractalgenerator withcontinuous parameters (cpfg) is a program for
modeling plants and visualizing their development. It can also be used to generate
images of 2D and 3D fractals. Models are expressed using the formalism of L-systems.

This manual assumes that the reader is familiar with the concepts of L-systems and
turtle interpretation presented inThe Algorithmic Beauty of Plants[7], as well as the
elements of theC programming language.

Part I contains reference materials. It describescpfg usage, user interaction, and
input and output file formats. Part II contains examples, from an L-system for a simple
fractal to realistic models of plants.

2 Machine requirements

The cpfg program runs on SGI workstations, and works best on machines with 24
bit planes. The program will run on machines with only 8 bit planes, but many of the
example models will not show up in the correct colors. The described distribution has
been compiled and tested using IRIX 5.3 release of the operating system.

A C macro preprocessor is also required (the default preprocessor is invoked by
cpfg using thecc -Ecall).

3 Distribution

The simplest way to usecpfg is within the Virtual Laboratory Environment (vlab).
The completecpfg andvlab software distribution (binaries only) with sample mod-
els and documentation is available at:

http://www.cpsc.ucalgary.ca/projects/bmv/vlab/index.html

5

Part I

Reference

4 Command line parameters

A call to cpfg takes the following form:

cpfg [-sstring size] [-v] [-V] [-d] [-P preprocessor] [-a] [-e environmentfile] [-g]
[-pipestrb] [-C communicationsetupstring] [-S socketnum] [-c mapnr] [-w xsize
ysize] [-wp xpos ypos] [-wt windowtitle] [-m[n] colormapfile] [-M[n] material file] [-
mb] [-pm] [-sb] [-o] [-homo] [- rgb rgbfile] [- ras rasfile] [- tga tgafile] [- rle rlefile]
[-ray rayfile] [-ps psfile] [-str textstringfile] [-strb binarystringfile] [-gls glsfile]
[-vv vvfile] [- iv ivfile] L-systemfile Viewfile [Animationfile]

TheL-systemfile andView file arguments are mandatory; the arguments in square
brackets are optional. A call tocpfg without any arguments prints a message with a
list of options.

4.1 General

-sstring size The value of the integerstring sizedefines the initial space allot-
ment for a string generated by an L-system. The default value is
150,000. Note that there is no space between-s andstring size.

-V This option putscpfg in verbose mode, in which a trace of input
data and execution details are printed tostdout.

-v This option putscpfg in warning mode. A trace of input data and
execution details (significantly reduced compared to the verbose
mode) are printed tostdout.

-d This option putscpfg in debugging mode. Selected information
pertinent to thecpfg operation is printed tostdout. This mode is
intended only for code development.

-P preprocessor Changes theC macro preprocessor applied to the L-system file
and view file. The default preprocessor is invoked bycpfg us-
ing thecc -E call. For example-P acpp invokes the ANSIC
preprocessor.

-a The program starts in animate mode (with animate menu). This op-
tion is necessary in off-screen rendering modes (-g, -pipestrb)
to create an animation according to the animate file.

6

-e communicationspecificationfile specifies parameters of plant-field communi-
cation and switches on environmental mode, in whichcpfg com-
municates with an external program simulating the environment.

L-systemfile The L-system definition. By convention, this file name has suffix
.l. See Section 6.1 for details.

View file Contains viewing, rendering, and drawing parameters including
the names of surface-specification files. By convention, this file
name has suffix.v. See Section 6.2 for details.

Animationfile Contains parameters controlling frame by frame production of im-
ages for animation purposes. By convention, this file name has
suffix .a. See Section 6.3 for details.

4.2 Graphics and windowing

-cmapnr The value of the integermapnr defines the 256-entry portion of
the color or material table to be used bycpfg . A value of 0 indi-
cates the first 256 entries, 1 the second 256, and so on (up to 15).
The background is colored using the first entry of the selected color
table or using the emissive color of the first entry of the selected
material table. The colors or materials used by the turtle are in-
dexed relative to this entry. The default value ofmapnr is 1. Note
that there is no space between-c andmapnr on the command
line.

-m[mapnr] mapfile Instead of the index mode, which uses hardware colormap, an
RGBA drawing mode is switched on. In this case, color indices are
read from a file containing 256 triplets of bytes defining red, green,
and blue. The integermapnr specifies the 256-entry portion of the
color table as for option -c (-mcorresponds to -m1). Note that there
is no space between-m andmapnr on the command line.

-M[mapnr] matfile Instead of the the index mode, which uses hardware colormap,
an RGBA drawing mode with OpenGL lighting computations is
used. In this case, the turtle parametercolor indexspecifies an
index to a material defined in a material file, which can be created
by programmedit . The integermapnr specifies the 256-entry
portion of the material table as for option -c (-Mcorresponds to
-M1). Note that there is no space between-M andmapnr on the
command line.

-wxsize ysize This option tellscpfg what should be the size of the opened draw-
ing window. For example,-w 1024 683 will open a window

7

suitable for saving image files with an aspect ratio of 3:2, appro-
priate for film recorders.

-wp xpos ypos Specifies the initial position of the window (of its top left corner).
The automatic positioning of windows has to be switched on (see
the IRIX window manager menu Desktop/Customize/Windows).

-wt windowtitle This option changes the title of the window (the icon name is still
cpfg).

-mb In addition to popup menus, a menu bar is created at the top of the
cpfg window.

-pm cpfg uses an X pixmap as a back buffer. The drawing is slower
but handling of expose events is very fast plus the full 24 bit per
pixel resolution can be used even in double-buffered mode.

-sb Single-buffer mode is set (this option takes precedence over the
commandsingle buffer in Animationfile). In the double-
buffered RGBA mode, a single-buffer mode may be necessary to
avoid dithering. This switch overrides switchpmand a pixmap is
not used.

-o Menus do not use SGI overlay planes, which results in producing
an expose event and redrawing the generated structure every time
they overlap the drawing window.

4.3 Special working modes

-g Performs an off-screen rendering. A colormap or a material file
must be specified (i.e. the off-screen rendering does not work with
hardware colormaps). If the switcha is not included,cpfg will
generate the string up to the last generation step (defined inL-
systemfile) and save particular files as specified by -rgb , -ras ,
etc. With switch a, all frames as defined in the animate file are
saved. It is recommended to specify filenames as format strings,
e.g. plant%03d.rgb.

ADD: Format strings are used in a few other places. It would be
nice to have a section explaining the general setup, along with us-
age examples.

-pipestrb The program uses the off-screen mode and converts a binary L-
system string file coming onstdin into a desired format (as spec-
ified by options -rgb , -ras , etc.), which can be output also to
stdout(except for image formats) by specifying the wordstdoutas

8

a filename for a selected format. If -a is present, further generation
(as specified by animate file) is performed. The optionpipestrb
can be used, for example, to pipe stored strings directly to rayshade
and avoid keeping big rayshade files.

-Ccommunicationsetupstring Specifies connections to other processes in a dis-hoofs/cpfg3.2.exam-
ples/Distr.environtributed simulations. The communication setup string is a single

string (with no spaces). Each connection starts with a symbol�x,
wherex is one ofm, s, andc, followed by several parameters,
divided by commas. The three types of connections are:

-m for a master connection —cpfg controls the data exchange
with the given program. The switch�m is followed by a
communication specification file for the given connection
and a socket number
(-m,commspecfile,socketnum). The same file and socket
number has to be specified for the slave process.

-s for a slave connection — the other program controls the data
exchange. The switch�s is followed by a communication
specification file for the given connection, a socket number,
and the name of the machine on which the master process
is running
(-s,commspecfile,socketnum,mastermachine,). The same
file and socket number has to be specified for the master
process.

-c connection to a process controlling the whole simulation.
The programcpfg confirms its successful execution by
sending a predefined character through this connection. The
switch�c is followed by a socket number and the name of
the machine where the main process is running (-c,socketnum,machine).

See an example in Section 4.5 and more details on the distributed
simulations in Section 8.5.

-S socketnum The program is able to process text commands (corresponding tohoofs/cpfg3.4.exam-
ples/socket.commandsmenu items) coming through the specified socket (using program

commandclient— see Section 9.2).

4.4 Output

-rgb rgb file Specify name for the 24-bit SGI RGB image file. Note that any
window that appears on top of thecpfg window when the snap-
shot is taken will be included in the image.

9

-ras ras file Specify name for the color-index SGI image file. Note that any
window that appears on top of thecpfg window when the snap-
shot is taken will be included in the image.

-tga tga file Specify name for the Truevision Targa image file. Note that any
window that appears on top of thecpfg window when the snap-
shot is taken will be included in the image. Available also in sun
version (unlike rgb and ras formats).

-rle rle file Specify name for the URT (Utah Raster Toolkit) run-length en-
coded image file. Note that any window that appears on top of the
cpfg window when the snapshot is taken will be included in the
image. Available also in sun version (unlike rgb and ras formats).

-ray ray file Specify name for the rayshade output file2.

-ps ps file Specify name for the Postscript output file (see Section 7.2).

-iv iv file Specify name for the Inventor output file.

-str text string file Specify the name of the file to which the string generated by
cpfg will be output in text format (see Section 7.3).

-strb binary string file Specify the name of the file to which the string generated
by cpfg will be output in binary format (see Section 7.3).

-homo strings are output after applying homomorphism.

-gls gls file Specify the name of the file to which the structure generated by
cpfg will be output in gls format (a set of OpenGL-like com-
mands — see Section 7.4 for detailed description). So far only
triangles of generalized cylinders and predefined surfaces are out-
put.

-vv vv file Specify the name of the file to which the bounding volume infor-
mation will be output. See thebox entry in Section 6.2.

-f anim path format Specify the directory and the format of file names for saving
consecutive animation frames, when selectingBegin Animate
from the animation menu (see Section 5.2). This switch is obsolete
with the possibility to specify file names as format strings, e.g.
plant%03d.rgb.

2Rayshade is a public domain ray tracer developed by Craig Kolb.Cpfg currently supports rayshade
version 4.0, which is available at
ftp://graphics.stanford.edu/pub/rayshade/rayshade4.0.tar.Z .

10

A filename may be specified as a format string (e.g.plant%03d.rgb) and the number of
the generation step is automatically inserted. This can be used for saving animations.

A filename may be specified also as “stdout” and the files are sent to a standard
output. Often used in pipe mode (-pipestrb).

In the case of string output (both in the text or binary format), the specified filename
is also used as the default name for the input of the string.

4.5 Usage examples

The most basic call tocpfg contains only an L-system and a view file:

cpfg fractal.l fractal.v

The next call includes an animation file, and specifies that Postscript output is to be
written to the filefractal.ps . The user must choose theOutput postscript item
from the main menu to write to this file (Section 5.1).

cpfg -ps fractal.ps fractal.l fractal.v fractal.a

For large models, model generation can be made faster by specifying a larger initial
string size on the command line. The default initial string size is large enough for most
models. If a model is too large for the given string size,cpfg will reallocate the string
and output the messageString is too long; reallocating .

cpfg -s1000000 complexplant.l complexplant.v

In the next examplecpfg uses color map number 3 and enters verbose mode. Output
file names are specified for both rayshade and Postscript formats. Note that the options
can be listed in any order, but that the L-system, view and animation files must be
specified last.

cpfg -ray plant.ray -c3 -v -ps plant.ps plant.l plant.v
plant.a

In all previous examples, a hardware colormap was used for coloring the surfaces.
A colormap can be specified on the command line.

cpfg -m plant1.map -m2 plant2.map plant.l plant.v

Instead of a colormap a material file can be included, improving the results of the
shading calculations.

cpfg -M plant.mat plant.l plant.v

11

It is possible to generate output files without the drawing window, in an off-screen
mode. In the example below, for all steps specified in the animate file a rayshade file
will be output.

cpfg -g -a -ray plant %03d.ray -M plant.mat plant.l plant.v
plant.a

Instead of keeping potentially big rayshade files, it is possible to output only the L-
system string and then pipe it throughcpfg directly to rayshade.

cat plant015.strb | cpfg -g -pipestrb -ray stdout -M plant.mat
plant.l plant.v | rayshade -O plant015.rle

In the next example, the program monitors a specified socket and if a text command
representing a menu item comes through the socket, it performs it as if the item was
interactively chosen in the menu.

cpfg -S 1000 -M plant.mat plant.l plant.v plant.a

The following call runs an interactive simulations with the environment defined by
an external process (as specified in the fileplant.e)

cpfg -M plant.mat -e plant.e plant.l plant.v plant.e

The plant can be also executed as a part of a distributed simulation (although it will be
very likely done by another program and not by the user). In this case, there are two
connections to two environmental processes (whose executables are specified in files
plant1:e andplant2:e).

cpfg -C -m,plant1.e,200,-m,plant2.e,300 -M plant.mat plant.l
plant.v plant.e

12

5 User interaction

The left mouse button is used to rotate the model in thecpfg window. Holding down
the left button and moving the mouse will cause the model to rotate in the direction of
mouse movement. Moving mouse up and down while holding down the middle mouse
button rescales the model in thecpfg window.

A menu, activated using the right mouse button, is provided for interaction with
cpfg . The available menu items depend on command line options and the current
state of the program. The menu controls re-reading of input files, regeneration of the
image, output in a variety of formats, and the switch to and from animate mode. Once
animate mode is selected, animation items are added to the menu. These items control
the animation process.

With the menu bar present in thecpfg window (program option -mb), the program
starts in animate mode and all menu items are accessible also from the two pulldown
menus on the menu bar.

5.1 Main menu

The main menu is composed of the following items:

New Model Rereads the L-system and view files, generates a new string and inter-
prets it to create a new image. The model is automatically centered in
the window, or placed according to user-specified viewing parameters
as described in Section 6.2.

New L-system Rereads the L-system file, generates a new string and interprets it to
create a new image without modifying the view.

New homomorphism Rereads the L-system file containing homomorphism and re-
interprets the current string using the new homomorphism (for more
details see Section 6.1.7).

New View Rereads the view file and re-interprets the existing string to create a new
image. The model is automatically centered in the window, or placed ac-
cording to user-specified viewing parameters as described in Section 6.2.

New environment Restarts the process simulating the environment. This menu item
appears only if a switch -e environmentfileis included in the command
line (cpfg communicates with an environmental program). May cause
problems if the environmental programs relies on the data from previous
simulation steps.

Window size Allows the user to set the size of the output window.

Output Allows access to a sub-menu of output file formats:

13

Image Saves the image in the window in various image for-
mats:

RGB SGI rgb format
RAS SGI colormap format
TGA TrueVision Targa format
RLE Utah Raster Toolkit image format

Rayshade rayshade 4.0 scene description file

Postscript Postscript scene description file

String current string in two formats:

text simple text format
binary internal representation

GLS format graphics library statements format

View Volume bounding volume information

Inventor SGI Inventor format object.

See Section 6 and Section 7 for more detail on file formats. Each of
these entries invoke a sub-menu allowing the user to save using a default
filename (the name of the L-system file with an appropriate extension
or the file specified on the command line) or to save under a different
name. In the second case, a special window is opened, allowing the user
to browse through the current directory and select the output file or to
type in the name. The modified filename is then stored and it appears as
the default output name next time user want to output the structure using
the same output format. In the case of string output (both in the text or
binary format), the stored filename is also used as the default name for
the input of the string.

Input Inputs data from the following formats:

String current string is read from a file of type:

text simple text format
binary internal representation

Both entries invoke a sub-menu allowing the user to input from
a file with the default name (the name of the L-system file with
an appropriate extension or the file specified on the command
line — using-str or -strb) or from a selected file. In the
second case, a special window is opened allowing the user to
browse through the current directory and select the input file.
The modified name is then stored and it appears as the default
input name next time user want to input a string using the same
format. The stored filename is also used as the default name for
the output of the string.

14

Animate mode selects an animation mode, which has its own menu (see Section 5.2).

Exit Exitscpfg .

5.2 Animation menu

The animation process begins with input of parameters, includingfirst frame, last frame
andstepfrom the animation file (see Section 6.3). If the animation file is not specified
on the command line, the animation parameters are set to its defaults (i.e. the first
frameis 1, thelast frameis equal to thederivation stepsspecified in the L-system file,
and thestepis equal to 1).

In the animation mode, an animation menu becomes available. The menu contains
all items as the main menu (except the itemAnimate mode). In addition, the fol-
lowing items become available, allowing the user to control the animation process:

Step Displays the frame resulting from the nextstepderivation steps. If this
goes past thelast frame, thefirst framewill be displayed.

Run Displays consecutive animation frames after eachstepderivation steps
until the last frameis reached or passed.

Forever The same asRun except that when thelast frameis reached, the anima-
tion returns automatically to thefirst frameand continues.

Stop Pauses the animation at the current frame.

Rewind Redisplays the animation from thefirst frame.

Clear Removes the current image from the window.

New animate Rereads the animation parameter file.

Begin Recording Gives access to a sub-menu allowing the user to initiate record-
ing in a selected file format. The sub-menu is similar to theOutput
sub-menu. After pickingRun from the animate menu, all subsequent
frames are recorded, untilStop Recordingis selected. For an L-system
“ foobar.l ” and selecting the rgb output, for example, the frames are
recorded by default asfoobar1.rgb , foobar2.rgb , etc., unless
the default file is set using a corresponding command line option (in
this case-rgb filename). Note that thefilenamecan be specified as a
format string,e.g. plant%03d.rgb. Recording formats and default file
extensions are the same as for Output files.

Stop Recording Stops the recording of animation frames.

Don’t Animate leaves the animate mode and switches back to the main menu.

15

6 Input files

6.1 L-system file

The essential theoretical notions of L-systems are described inThe Algorithmic Beauty
of Plants[7]. The syntax is defined formally in Appendix A. Every L-system file spec-
ifies a derivation length, a list of symbols to be ignored (or considered) when context
matching, an axiom, and a set of productions, which may be either deterministic or
stochastic. A production consists of a predecessor and a successor with optional left
and/or right contexts. The L-system can be defined over an arbitrary alphabet which
does not contain the asterisk (*) or any separators (space, tab, etc.). Section 6.1.9 lists
the symbols which have a graphical interpretation.

The typical file has the following format in the deterministic case:

lsystem: label
derivation length: d
ignore: symbols
axiom: axiom
lcontext< predecessor> rcontext: f � g C f � g --> successor
lcontext< predecessor> rcontext: f � g C f � g --> successor
. . .
lcontext< predecessor> rcontext: f � g C f � g --> successor
endlsystem

The text in typewriter font , all spaces, and all special symbols must be
entered as shown. The derivation lengthd must be a positive integer or zero. The
symbols list should include all symbols to be ignored while context matching. Alter-
natively, symbols to be considered when context matching can be specified following
a consider: keyword. Theaxiom, and thepredecessor string in each production
must be nonempty. Thesuccessor strings in each production may be empty, in which
case it must be represented by an asterisk (*). Thelcontext andrcontext strings may
be empty, in which case they can be represented by an asterisk (*) or left out completely
along with the respective< and> symbols. A production may optionally include a con-
dition C, which is a boolean expression usingC-like syntax. The production will be
used only if this expression evaluates to true. If a production has a condition, either
f�g or f�g or both may also be included. They represent lists of semicolon terminated
statements expressed usingC-like syntax. Iff�g is given, it specifies statements to
be executedbeforeevaluating the conditionC. If f�g is given, it specifies statements
to be executedafter if the result of evaluating the condition is true. For example, the
following is a valid production:

A(x,y) : fz = x+y; g z>10 fn = cos(x-y); g --> A(n,z)

Note that all parameters are assumed to have real (floating point) values.
The end of an L-system specification is signaled by theendlsystem keyword.

16

For a stochastic L-system, a seed for the random number generator is also required
and the typical file has the following, slightly modified, format:

lsystem: label
seed: i
derivation length: d
ignore: symbols
axiom: axiom
lcontext< predecessor> rcontext: f � g C f � g --> successor: p1
lcontext< predecessor> rcontext: f � g C f � g --> successor: p2
. . .
lcontext< predecessor> rcontext: f � g C f � g --> successor: pn
endlsystem

The new first line specifies the integer seedi for the random number generator. Each
production has a probability factor represented by the floating point valuep associated
with it. SeeThe Algorithmic Beauty of Plants[7] page 28 for more information.

6.1.1 Variables

Variable names are defined as in C. There are two types of variables, float and character
string, but character strings require special handling as they are passed by reference.

The variables are defined in the whole scope of an L-system. Often, if a variable is
used in a production, it has to be defined in

There is a block structure controlling their scope. There is a special definition
section for arrays, which are indexed as in C (Section 6.1.4).

ADD (Jim?): an explanation of the ”external” statement that can now appear in the
define section of cpfg. Basic syntax is the keyword ”external” followed by a comma-
separated list of variable names and array definitions. The arrays require their dimen-
sions to be specified I believe.

6.1.2 Programming statements

There are three types of statements which can be included in L-system productions:

� The first type is represented by assignment statements of the form
varname = expression;

where variable names are specified as in C andexpression is an arithmetic
expression. In this case the expression can also include local variables which
have been assigned a value in previous assignment statements (within the same
production), as in the following production:

A(y): fx=y/2; s=x*x;g s<5 fz=sqrt(y);g ! B(z)C(z+1).

All variables have floating point values.

In case of functionprintf , it is possible to omit the assignment part and ignore
the value returned by the function:

17

fa=a+1;printf(”a=%f nn’”,a); g.

� The second type of statement includes conditional statements
if (condition)fstatmt1; ... statmtn;g

and
if (condition)fstatmt1; ... statmtn;g elsefstatmt1; ... statmtm;g

wherecondition is a logical expression andstatmti are statements.

� The third type of statement is represented by loop statements
while (condition)fstatmt1; ... statmtn;g

and
dofstatmt1; ... statmtn;g while (condition);

The meaning ofcondition andstatmti is the same as for conditional statements.

Statements� are performed every time the predecessor and left and right contexts
match, before the condition is evaluated (even if it results in not applying the produc-
tion) and before the matching production is found. Thus statements� can be applied
to precompute expressions used in the condition. The� statements are performed after
a condition is evaluated as true, but before the predecessor is replaced by the successor.

If a production does not have a condition, the empty condition� has to be used:

lcontext< predecessor> rcontext: � f � g ! successor

Compared to the C syntax, the syntax of L-system programming statements has to
follow these specific rules:

� Each assignment statement or a function call has to be terminated with a semi-
colon, even if it is a last statement in a block of statements (just before ’g’).

� Even if there is a single statement following the keywordif , else, while, and
do, it has to be enclosed in curly brackets.

� Operators like++,��, + =,� =, � =, = =, etc.are not supported.

6.1.3 Global programming statements

Similarly to programming statements associated with productions operating on local
variables, global statements, executed at specific points of the simulation, can be used
to define global variables accessible in all productions. In thecpfg language, it is
possible to define four blocks of statements, which are defined before the list of L-
system productions, using the commands:

Start:fstatementsg processed at the beginning of the simulation,
End:fstatementsg processed at the end of the simulation,
StartEach:fstatementsg processed at the beginning of each step,
EndEach:fstatementsg processed at the end of each step.

18

The statements are of the same type as production statements introduced in the previous
section. Variables used on the right side of an assignment statement in one of these four
statement blocks are considered as global variables and can be accessed in any other
block or production. A conflict of two productions accessing the same global variable
at the same time is avoided because in the modeling programcpfg, the parallel rewriting
process is captured by applying the productions sequentially, from left to right [5].

6.1.4 Arrays

The values of parameters of a plant model depend frequently on the order of an apex, or
a branch or on another value such as the apex age or vigor. It is possible, for example,
to have a separate production for each order with a successor using different values of
growth parameters. But it is more effective to define an array of values and use only
one production.

To define arrays, thecpfglanguage was extended by the commanddefine followed hofs/cpfg3.0.features/-
arraysby a specification of all arrays used in the model:

define:f arrayname1[N1;1]:::[N1;D1
] = fv[0]:::[0][0]; v[0]:::[1]; :::; v[N1;1�1]:::[N1;D1

�1]g;

:::

namen[Nn;1]:::[Nn;Dn
]; g

The command can be placed anywhere before the list of productions. A single ar-
ray is specified by its namenamei and sizesNi;i:::Ni;Di

for each ofDi array di-
mensions. The array can be initialized by including a list of all array values be-
tween a single pair of curly brackets. The firstNi;Di

values initialize array items
namei[0]:::[0][0]; ::: ; namei[0]:::[0][Ni;Di

�1], nextNi;Di
values initialize array items

namei[0]:::[1][0]; ::: ; namei[0]:::[1][Ni;Di
� 1], and so on. Several arrays can be de-

fined, with each specification separated by a comma and the last one terminated by a
semicolon. The specification can extend over several lines.

In the following example, three one-dimensional arrays are defined and the first
two are immediately initialized.

define:f arrayGrowthRate[5] = f1; 0:8; 0:7; 0:6; 0:5g;
BranchingAngle[4] = f60; 55; 55; 50g;
ReceivedNutrients[5]; g

6.1.5 Predefined functions

The following predefined functions can be included in L-system expressions:

sin (�), cos (�), tan (�) standard trigonometric functions. Argument� is in
degrees.

asin (x), acos (x), atan (x), atan2 (x; y) standard inverse trigonometric func-
tions. Functionsasin andatan return value of an angle between�90� and
+90�. Functionacos returns a value between0� and90�. Functionatan2
returns arctangent ofy=x in the range�90� to+90�.

19

exp (x), log (x), sqrt (x), fabs (x), xˆ y other standard functions.

floor (x), ceil (x), trunc (x) rounding functions.

sign (x) returns 0 forx = 0, 1 for positivex, and -1 for negative values ofx.

srand (seed) initializes a random number generator used in all four following func-
tions.

ran (x) generates floating point values uniformly distributed in intervalh0; x).

nran (mean; �) generates random numbers with normal distribution with meanmean hofs/cpfg3.0.features/-
randomand standard deviation�.

bran (�; �) returns random values with beta distribution.

biran (n; p) generates random values with binomial distribution — how many out
of n numbers are belowp;

stop (n) stops animation. When the parametern is equal to 1 andRun orForever hofs/environment/-
chiba/twocompetingis selected from the menu,cpfg only draws the current string and continues the

simulation. Otherwise, the simulation is stopped.

printf ("format string"; var1; var2; :::) prints variables to standard output. All
variables are of typefloat, thus the format string should contain only%f or%g.

fopen ("file name"; "type") opens a file specified by its name for input (type =

r) or output (type = w). The function returns an index of the file, used in the
functions below.

fclose (file) closes the filefile.

fscanf (file; "format string";&var1;&var2; :::) allows to input data from an hofs/cpfg3.0.features/-
file.input.Rootmapexternal file specified by file indexfile.

fprintf (file; "format string"; var1; var2; :::) outputs specified variables into
the file file, using the format string. As in the case of functionprintf , the hofs/environment/-

MonteCarlo/test.runsstring should contain only%f or%g.

fflush (file) flushes the buffers associated with the filefile.

6.1.6 Sub L-systems

It is often convenient to apply concepts of structural programming to L-system models
and to divide bigger structures into independent parts. This allows the modeler to
first describe the development of some parts of the plant, and then combine the pieces
together in the complete model. Thus the design of a model is more efficient and it
is possible to reuse productions simulating the growth of certain plant organs in other
models.

20

. . . $(id1) . . . $. . .

applying
sub L−system id1

 applying
 main L−sys.

applying
main L−system

. . . $(id1) . . . $(1) . . . $. . . $. . . $(id2,0.5) . . . $. . .

applying
sub L−system id1

applying
main L−system

main
L−sys.

sub
L−sys. id1

main
L−system

sub
L−sys. id2

main
L−sys.

applying
main L−system

axiom

Figure 1: Example of a developmental sequence generated by an L-system with two
sub L-systems

To this purpose, Hanan, in his thesis [1], extended parametric L-systems to include
multiple sets of productions. The framework consists of amainL-system, controlling
the development of the overall structure, and additional sets of productions,sub L-
systems, which are invoked from the main L-system or from each other in a manner
similar to calling subroutines in a program. Unlike subroutines, no values are returned
to the main L-system upon a completion of a sub L-system.

In the cpfg language, the main L-system is the first set of productions in the L-
system file. Each set of productions has assigned to it a unique index using command
Lsystemon the first line of the specification of the main L-system (index 1) or a sub
L-system. During the application of productions, module$(id) switches the control
to an L-system with indexid, i.e. all following modules are replaced by productions
from this L-system. An optional second parameter can specify the scale applied to
all geometry produced by the L-system with indexid. Module$ without parameters
returns the control to the original (parent) L-system (see Figure 1).

In the following example, productions for development of the main axis and devel-hofs/cpfg3.0.features/-
subLsystemsopment of lateral branches are separated.

L-system 1

Lsystem: 1 /* Main L-system simulating growth of the main axis */
! : A(2; 1)

p1;1 : A(l; o) ! !F (l) [&(86)?(2; Rb)B(l)?]=(95) [&(86)?(2; Rb)B(l)?]=(95)
[&(86)?(2; Rb)B(l)?]=(95) [&(86)?(2; Rb)B(l)?]=(95)
A(l �R1; o+ 1) : 6� o

p1;2 : A(l; o) : o > 1 ! !F (l) [&(86)?(2; Rb)B(l)?]=(129) [&(86)?(2; Rb)B(l)?]
=(129)[&(86)?(2; Rb)B(l)?]=(129) A(l �R1; o+ 1) : o

endLsystem

21

Lsystem: 2 /* Sub L-system simulating growth of branches */
! : B(1)

p2;1 : B(l) ! !F (l) [+B(l �R2)][�B(l �R2)] : 0:7

p2;2 : B(l) ! ! + (10)F (l)=(180)B(l �R2) : 0:3

endLsystem
Each branch apexB introduced in the main L-system by productionsp1;1 or p1;2 is
enclosed by modules? and$ (presented in bold to make them more visible). In the
next simulation step, the module?(2; Rb), inserted just before the apexB, switches the
control to the sub L-system and sets the scaling toRb. Thus the moduleB is replaced
by applying either productionp2;1 or p2;2. The symbol$ behind moduleB returns the
control to the main L-system. In the subsequent steps, all modules of the lateral branch,
enclosed between modules$, are processed using productions of the sub L-system.

The axiom! of the sub L-system does not affect the simulation, but it is useful
when the sub L-system is being developed and tested (without the main L-system).

6.1.7 Homomorphism

An L-system homomorphism is defined as a set of productions applied only for inter-
pretation purposes. This allows the modeler to change the details of the appearancehofs/cpfg3.0.features/-

homomorphismwithout modifying the underlying logic of the model (captured by L-system produc-
tions).

In cpfg , an L-system homomorphism is specified by productions that are placed
at the end of an L-system between keywordshomomorphism andendlsystem .
During the interpretation of the L-system generated string, a matching homomorphism
production is selected for each module in the string. The homomorphism image of a
module is then defined by the successor of the matching homomorphism production.
If there is no matching production, the homomorphism image of this module is the
module itself. Productions with parameters or local programming statements operate
similarly as L-system productions,i.e. the values of formal parameters in expressions
are replaced by the real values of the module’s parameters.

The resulting overall structure of an L-system with homomorphism is shown below:

lsystem: label
derivation length: d
ignore: symbols
axiom: axiom
lcontext< predecessor> rcontext: f � g C f � g --> successor
lcontext< predecessor> rcontext: f � g C f � g --> successor
. . .
lcontext< predecessor> rcontext: f � g C f � g --> successor

homomorphism [: [no] warnings]
seed: s

maximum depth: d

lcontext< predecessor> rcontext: f � g C f � g --> successor

22

lcontext< predecessor> rcontext: f � g C f � g --> successor
. . .
lcontext< predecessor> rcontext: f � g C f � g --> successor
endlsystem

It is possible to repeatedly apply the homomorphism productions to the resultinghofs/cpfg3.4.exam-
ples/homomorphism/-
recursive

homomorphism image of a module. To enable this operation, the keywordmaximum
depth should follow the keywordhomomorphism . The valued then specifies the
maximum depth of application of homomorphism productions (to avoid an infinite
recursion).

A warning is issued if the maximum depth is reached and it is possible to furtherhofs/cpfg3.4.exam-
ples/homomorphism/-
recursive

apply the homomorphism productions (only in version 3.4 and higher). This warn-
ing can be avoided by specifying an optional keywordno warnings following the
keywordhomomorphism :

homomorphism: no warnings

which is equivalent to:

homomorphism

(kept for backward compatibility). It is possible to use only the keywordwarnings
to specify that the warnings are switched on:

homomorphism: warnings

A context for a homomorphism production is defined as the context of the module
in the L-system string, to which the homomorphism is applied,i.e. the homomorphism
image of the modules on the left and right will not affect the context search. In the
following example the context of productionh1 is used to draw only branches whosehofs/cpfg3.4.exam-

ples/homomorphism/-
context

end point hasy coordinate less than 3:
L-system 2

! : A(1)

p1 : A(o) o < 6 ! [+(20)F ?P (0; 0)A(o+ 1)][�(20)F ?P (0; 0)A(o+ 1)]

homomorphism
h1 : F > ?P (x; y) : y > 3 ! f

Even if the homomorphism productions in the previous example were:
homomorphism
maximum depth: 2
h1 : F ! G?P (0; 0)

h2 : G > ?P (x; y) : y > 3 ! f

The context for the productionh2 would be the module?P in the L-system string (with
the properly set parameters) and not the module?P introduced by the homomorphism
productionh1.

The use of random values in a homomorphism is not recommended during an an-
imation of the plant development, because the values used in one simulation step are

23

different from values used in another step and visible discontinuities may result. The
resulting structure may change after each redraw, for example during rotations or win-
dow expose events. To prevent this from happening, it is possible to use a separate
random number generator used only by the homomoprhims productions. This option
is switched on by specifying the seed for this generator, using a keywordseed: fol-
lowing either the keywordhomomorphism or the keywordmaximum depth .

If sub L-systems are also used, each sub L-system has its own homomorphism,
which has to be specified at the end of the sub L-system.
ADD: It would be nice to have a global homomorphism that would be shared by the
main L-systems and all sub L-systems (not implemented yet).

If a homomorphism production is specified with the delimiter-o> (an object pro- hofs/cpfg3.4.exam-
ples/homomorphism/-
rayshade.instancing

duction) instead of--> , the operation of such a production is similar to the operation
of a production with delimiter--> . During outputting the geometry to a rayshade
file the object productions specify objects which should be instantiated. It is possible
to specify (using the view file commandrayshade objects) a format string for
module’s parameters that controls the precision used for differentiating between two
objects created by the same modules with the same number of parameters. It is also
possible to control whether even the turtle is considered when comparing two objects
created by the same module with the same parameters (if the objects are different the
second one is not an instantiation of the first one).

Note that the homomorphism productions are applied also during the environmen-
tal step to be able to properly determine the turtle parameters to be sent to the environ-
mental program (with communication module?E) and to set the parameters of query
modules?P , ?H , ?L, and?U (see Section 6.1.9). Consequently, if you use a homo-
morphism production that is applied to one of the module?E, the module will not be
sent to the environment. Similarly, a homomorphism production with?P , ?H , ?L, or
?U in the predecessor will cause that the values of the parameters of this module will
not be set. For example, if there was an additional production

h3 : ?P (x; y) ! @O

in the example above, the parameters of?P would stay 0 and all branches would be
drawn.

6.1.8 Decomposition

Decomposition productions make it possible to decompose a module in the string into
several components. Thus the L-system productions can focus only on the develop-
ment of main building blocks of a plant, such as an apex, meristem, or leaf. After
each simulation step, before the string is interpreted (and a possible homomorphism is
applied), modules representing these organs can be replaced by several other modules,
representing parts of the organs. Unlike for homomorphism productions, the result of
decomposition stays in the string.

Decomposition productions have to be specified after L-system productions andhofs/cpfg3.4.exam-
ples/decomposition

24

before homomorphism productions (or at the end of an L-system if no homomorphism
productions are included).

lsystem: label
derivation length: d
ignore: symbols
axiom: axiom
lcontext< predecessor> rcontext: f � g C f � g --> successor
lcontext< predecessor> rcontext: f � g C f � g --> successor
. . .
lcontext< predecessor> rcontext: f � g C f � g --> successor

decomposition
maximum depth: d

lcontext< predecessor> rcontext: f � g C f � g --> successor
. . .
lcontext< predecessor> rcontext: f � g C f � g --> successor

homomorphism
seed: s

maximum depth: d

lcontext< predecessor> rcontext: f � g C f � g --> successor
. . .
lcontext< predecessor> rcontext: f � g C f � g --> successor
endlsystem

The syntax of decomposition productions is similar to homomorphism productions,
in that there are decomposition productions specific for each sub L-system and the user
can specify the maximum depth or whether warnings about reaching the maximum
depth are printed (the only difference is that the productions with delimiter-o> have
no special effect on the rayshade output). The commandseed cannot be included
at the beginning of decomposition, decomposition productions use the same random
number generator as the L-system productions.

6.1.9 Interpreted symbols

During the visualization, the string of symbols is parsed from left to right and every
time a special symbol controlling the turtle is encountered the function associated with
the symbol is performed. Symbols with predefined interpretations are listed below.

Symbols with no parameters use default values specified at the beginning of the
simulation. If a symbol has more parameters than those specified below, the additional
parameters are ignored.

Changing position and drawing

25

H\
→

/
L

−+

U
→

→

^

&

Figure 2: Controlling the turtle in three dimensions

F(d) Move forward a step of lengthd and draw a line segment from the original po-
sition to the new position of the turtle. If the polygon flag is on (see the symbols
f andg), the final position is recorded as a vertex of the current polygon. If no
parameter is given, the default step size 1 is used.

f(d) Move forward a step of lengthd without drawing a line. If the polygon flag
is on, the final position is recorded as a vertex of the current polygon. If no
parameter is given, the default step size 1 is used.

G(d) Move forward a step of lengthd and draw a line. If no parameter is given, the
default step size 1 is used.

g(d) Move forward a step of lengthd without drawing a line. If no parameter is
given, the default step size 1 is used.

@M(x; y; z) sets the turtle position to(x; y; z).

The global parameterline style specifies whether the line is drawn as a line, poly-
gon, or a cylinder.

Turtle rotations
The turtle can be rotated only around its heading, left, or, up vector (Figure 2):

+(�) Turn left by angle�� around theU axis.

�(�) Turn right by angle�� around theU axis.

&(�) Pitch down by angle�� around theL axis.

^(�) Pitch up by angle�� around theL axis.

n(�) Roll left by angle�� around theH axis.

/(�) Roll right by angle�� around theH axis.

26

j Turn around180� around theU axis. This is equivalent to+(180) or -(180) .
It does not roll or pitch the turtle.

@v Roll the turtle around theH axis so thatH andU lie in a common vertical
plane withU closest to up.

@R(hx; hy; hz;[ux; ux; uz]) Set the turtle heading to(hx; hy; hz) (if the vector is
not normalized the program will automatically do it). If only the first threehofs/environment/-

soil/2d.no.avoiding/-
animation

parameters are specified, the turtle up and left vectors are adjusted minimizing
their rotation with respect to their previous orientation. Otherwise the next
three parameters specify the turtle up vector (also this vector does not have
to be normalized). In this case, the left vector is computed directly from the
specified heading and up vectors.

Modules@v and@R adjust the turtle orientation with respect to absolute coordinates
(as compared to other rotations, performed with respect to the current turtle orienta-
tion).

If no parameter is given for the symbols+, - , &, ^, n, and/ , the value of the view
file parameterangle increment (see Section 6.2) is used.

Changing turtle parameters
The following symbols change turtle parameters:

;(n) Increase the value of the current color index or material index by thecolor
increment , or set ton if a parameter is given.

,(n) Decrease the value of the current color index or material by thecolor in-
crement , or set ton if a parameter is given.

@;(n) Increase the value of the current color index or material index of the back sidehofs/cpfg3.0.features/-
interpretation/-
doublesides.surfaces

of a surface by the second parameter of commandcolor increment (in the
view file), or set ton if a parameter is given. Surfaces can have different colors
or materials specified for each side only if the view file commandinitial
color has two parameters.

@,(n) Decrease the value of the current color index or material of the back side of a
surface by thecolor increment , or set ton if a parameter is given.

#(n) Increase the value of the current line width by the global parameterline
width increment , or set ton if a parameter is given.

!(n) Decrease the value of the current line width by the global parameterline
width increment , or set ton if a parameter is given.

@Tx(index) Sets texture with indexindex (the order of the texture specification inhofs/cpfg3.0.features/-
interpretation/texturesthe view file). Index 0 switches off texturing. If a predefined bicubic surface

has associated a texture index in the view file, its texture is fixed and cannot be
changed by module@Tx.

27

@D(scale) Sets the current turtle scale toscale. All subsequent geometry will be
scaled by the specified value. The default value is set by the view file command
initial scale .

@Di(factor) Multiplies the current turtle scale byfactor. If no parameter is speci-
fied the default value, set by the view file commandscale multiplier , is
used.

@Dd(factor) Divides the current turtle scale byfactor. If no parameter is speci-
fied the default value, set by the view file commandscale multiplier , is
used.

Modeling of structures with branches (Figure 3)

[Push the current state of the turtle (all its parameters) onto a pushdown stack.

] Pop a state from the stack and make it the current state of the turtle.

% The symbol%cuts the remainder of a branch. Whenever it is detected in thehofs/cpfg3.0.features/-
cut modulestring during the generation process, it and all following symbols up to the

closest unmatched right bracket] are ignored for derivation purposes, and will
therefore disappear from the generated string. If an unmatched right bracket
is not found, symbols are ignored until the end of the string. The symbols is
ignored, if it is introduced by a homomorphism production.

%(par) Supports fragmentation. If the symbol% is found on the right side of any L- hoofs/cpfg3.0fea-
tures/fragmentationsystem production, a special interpretation step is performed after each generate

step (if also the environmental pass is performed, these two passes are done
together).

When the module is encountered during this pass, the following substring (up to
the closing ’]’ at the same level or up to the next%(par)) is moved to the end
of the L-system string and it is preceded by a symbol%(par; turtle index),
whereturtle index points to a special array of turtles. This array stores the
turtle parameters as they were when the module%(par) was encountered. After
the substring is moved to the end of the L-system string, every time a module
%(par; turtle index) is encountered in the following interpretation steps, the
turtle parameters are set to the values stored in the array of turtles under index
turtle index.

The context searches are not passing over this module (if the parameter is
present). Be careful when defining sub L-systems, because if the module%(par)

appears within a set of?(id) and$ (see below) the result after the cut is unde-
fined. A production with%(par) as a predecessor will prevent the moving of
the substring. The value of parameterpar can be arbitrary.

@mc(flag) Conditional cut. Operates as the module% (with no parameter) only if hofs/cpfg3.0.features/-
cut module/condition-
al cut

the value offlag is equal to 1. Otherwise, it has no effect.

28

F [+F][�F [�F]F]F [+F][�F]

Figure 3: Turtle interpretation of a bracketed string

Symbols used to create polygons along withF and f

f Start a new polygon by pushing the current turtle position onto the polygonhofs/cpfg3.0.features/-
interpretation/-
polygons

stack and set the polygon flag on. See also modulef(type) in the section on
generalized cylinders (below).

g Pop a polygon from the stack and render it. If no more polygons are on the
stack, turn the polygon flag off. See also moduleg(type) in the section on
generalized cylinders (below).

. Place the current state of the turtle on the polygon stack if the polygon flag is
on.

Drawing circles and spheres

@o(d) Draw a circle of diameterd in the plane of the screen. If no parameter is given,
the current line width will be used.

@c(d) Draw a circle of diameterd in theHL plane. If no parameter is given, the
current line width will be used.

@O(d) Draw a sphere of diameterd. If no parameter is given, the current line width
will be used. The spheres produced can be shaded even in the colormap mode,
since a set of polygons approximating a sphere is generated using code from
the widely availablesphere.c file by Jon Leech (leech@cs.unc.edu).

Drawing parametric bicubic surfaces

� Draw the predefined surface identified by the symbol immediately following thehofs/cpfg3.0.features
� at the turtle’s current location and orientation. The control points, geometry
and neighborhood information for surfaces are read from surface specification
files at the beginning of the simulation.

29

@PS(i,basis) Initializes the four rows and columns of control points for an L-systemhofs/cpfg3.0.features/-
interpretation/Lsys.-
defined.surf.textured

defined surfacei to (0; 0; 0). The optional parameterbasisspecifies the type of
patch as:

1. Bèzier,

2. B-spline,

3. Cardinal spline.

If no basis is given, the default, B`ezier, is used.

@PC(i,r,c) Assigns the current position of the turtle to the control point of the L-
system defined surfacei in row r and columnc.

@PD(i,s,t) Draws the surface defined by the control points of surfacei usings lines
along the rows andt lines along the columns.

Drawing generalized cylinders

@Gs Start a generalized cylinder in the current turtle position. Equivalent tof(1) hofs/cpfg3.0.features/-
interpretation/-
gencylinders

followed by ’.’ (see below).

f(type) Start a generalized cylinder. The parameter type is one of the following:

1 an open curve consisting of Hermite spline segments (as in the case of
@Gs);

2 a closed curve consisting of Hermite spline segments;

3 an open curve consisting of B-spline segments;

4 a closed curve consisting of B-spline segments.

If the parametertype is 0 or is not specified, the points between a pair of curly
bracketsf andg specify a polygon (see above). The module does not specify
the first control point.

@Gc(strips) Specifies a control point on the central line of the generalized cylinder.
The value ofstrips specifies how many mesh strips are drawn between the
control point and the previous one. The more strips are drawn, the smoother
the generalized cylinder looks. If no parameter is given, one strip is drawn.
Equivalent to:(strips) (see below).

.(strips) Equivalent to @Gc(strips), only it can be used also for specifying vertices
of a polygon (see the SectionSymbols used to create polygonsabove). If the
generalized cylinder is started using symbolf, a control point is also defined
after eachf or F (the same way as in the case of polygons — the number of
strips is then set to the default value of 4).

@Ge(strips) End a generalized cylinder. The parameterstrips controls the number
of strips as for symbol@Gc.

30

g(type) Finishes a generalized cylinder started by a modulef(types) The parameter
type has to match the value oftypes. If a new generalized cylinder is started be-
fore an old one is finished, the result is undefined (unless it is defined in a branch
delimited by square brackets,e.g.f(1)f(1)[f(3)f(1) g(3)] g(1)).

@Gt(start; end) Multiplicative parameter for the length of tangents of a Hermitehofs/cpfg3.0.features/-
interpretation/-
gencylinders/-
tangents

curve that specify the axis of the generalized cylinder between two consecu-
tive control points. The tangent lengths are equal to the distance between the
two control points multiplied by the tangent coefficients (the default value is
1.2).

@Gr(angle1; length1; angle2; length2) Specifies the slope and length of two tan-hofs/cpfg3.0.features/-
interpretation/-
gencylinders/radii

gents of a Hermite curve which describes the change of radius of a generalized
cylinder. The command defines the angle of the tangent and its length for a seg-
ment finishing at the next specified control point and for the following segment
starting at the same point.

The angle is defined with respect to the axis of a straight segment of a unit
length, thus the real slope of the radius may not correspond to the set value
for curved segment or segment of a different length (the second problem can
be avoided by using module@Gr(1)). In addition if you increase the length
of the tangents of the axis too much (by module@Gt) the strips close to the
control points will be wider that the strip in the middle and the angle of radius
tangents will be skewed as well.

As a default or when both lengths are equal to 0, the radius at the control points
is set so that it is linearly interpolated along the segment (if only one length is
set to 0, the tangent at the point is set as if the radius was interpolated linearly).

@Gr(flag) Switches on (flag=1) or off (flag=0) an automatic adjustment of radius
tangents for segments of a non-unit length. If the flag is 1, the tangents are
defined for a segment of a unit length and then stretched onto the segment of
a non-unit length, thus the specified tangent angles do not correspond to the
real angles of the tangents. As a default, tangents are not adjusted after the
stretching.

@#(contour id) Sets the contour specified bycontour id as the current contour for hofs/cpfg3.0.features/-
interpretation/-
gencylinders/-
contours

generalized cylinders. Contours are specified in the view file (see the command
contour in Section 6.2). A contour withid 0 is the default circle. Unlike
in case of textures or tropisms, contourid is specified in the view file for each
contour separately and it does not depend on the order of commandscontour .

@!(polygons) Sets the number of polygons around a generalized cylinder or a cylin-
der that is represented byF orG.

Changing tropisms parameters

31

@Ts(index,value) Set elasticity parameter of tropism with indexindex to value. hofs/cpfg3.0.features/-
interpretation/-
tropisms

Index is given by the order of the tropism specification in the view file (starting
with 1).

@Td(index[,value]) Decrease the elasticity parameter by the default elasticity incre-
ment specified in the view file or by the given valuevalue.

@Ti(index[,value]) Increase the elasticity parameter by the default elasticity incre-
ment specified in the view file or by the given valuevalue.

@Tp Prevent twist. This command adjusts the turtle’s up and left vector to minimize
the twist [3]. This command operates locally,i.e. it adjusts the turtle’s vectors
only at the current point.

@Tf Force the twist. If the orientation of a segment following symbols/ or n is
adjusted due to a tropism (which as a default adjusts the segment’s up vector
to prevent twist), the effect of the symbols/ or n is nullified. In such cases it
is necessary to add the symbol@Tf to force the twist. This command operates
localy, i.e. it prevents twist only for symbols/ or n to the left of@Tf.

Symbols for Sub-L-systems

?(id,scale) Causes the generator to save a reference to the current L-system on a stackhofs/cpfg3.0.fea-
tures/subL-systemsand to use the list of productions from the sub-L-system identified byid during

subsequent production matching and application. During interpretation, the
current scale is saved on a stack and the structure resulting from interpretation
of the generated substring is scaled byscale.

$ End the sub-L-system and return to the previous set of productions and scale.

Query and communication symbols

?P(x; y[; z]) queries the current turtle position. If the module is present in any L-hofs/cpfg3.0.fea-
tures/querymodulesystem production, an interpretation step is performed after each generate step,

when productions are applied. The string is thus interpreted even ifcpfg does
not draw to the window. During the interpretation, the two or three parameters
of the module are set to thex, y, orx, y, andz coordinates of the current turtle
position, respectively. These parameters then can be accessed in the follow-
ing generate step and affect the selection of productions (see the definition of
environmentally-sensitive L-systems in [6]).

?H(x; y[; z]) queries the current turtle heading vector (similarly as?P).

?L(x; y[; z]) queries the current turtle left vector (similarly as?P).

?U(x; y[; z]) queries the current turtle up vector (similarly as?P).

32

?E(x1; : : : ; xm) module?E (communication module) is used both to send and receivehofs/environment/...
environmental information represented by the values of parametersx1; : : : ; xm.
Specifically, parametersx1; : : : ; xm act as an interface between the plant and
the environment, simulated by an external process. They can be set by the
plant model and transferred to the environment or set by the environment and
transferred to the plant model (see the definition of Open L-systems in [2, 4])

Miscellaneous commands

@L(”Label”) Prints the ”label” in the drawing window at the current turtle loca-hofs/cpfg3.0.fea-
tures/labelstion using the font specified in the view file. It is also possible to specify a

printf-like format string and print out values of subsequent parameters (e.g.
@L("a= %g",a)).

@S(”any system call”) Will make the system call when interpreted.

@I(”rayshade object”[; scale]) Includes a rayshade objects with a given name, lo-
cated at the current turtle location, and scaled by a given value (only for a
rayshade output). The second parameter is optional.

@J(size1; size2; size3) As a default, all objects output into a rayshade file are en-
closed in one grid. To be able to create more grids, tightly enclosing each plant,
for example, the module@Jcloses the current grid and starts a new grid of a
given size (in number of voxels). This module is interpreted only during the
rayshade output. Usually, a value of20 for the longest object dimension is suf-
ficient. The shorter dimensions then can be reduced accordingly (this has to be
done by the user). If the object dimension are not known, values20� 20� 20

would work.

If a module starting with a letter@ is not one of the recognized interpreted mod-
ules, a warning message is issued during the interpretation of the string. An exception
are modules@Z and@Y, which are used for controlling the tropism elasticities in a
program for interactive editing of L-system generated strings (currently in develop-
ment).

33

6.2 View file

A view file contains drawing, viewing, and rendering parameters as well as the names
of surface specification files for any surfaces to be included in the image. The format
of the view file is given below. All text intypewriter font , special symbols and
all spaces should be entered as shown. Unless stated otherwise, the symbolsx; y; and
z represent floating point numbers,i represents an integer,id represents a single char-
acter, and other text initalics represent character strings. Comments can be included
using standardC notation: /* ... */ . Many of the parameters in this file have
default values, and can be omitted, but it is good practice to have everything in the file.
This makes it easier to change default values because the appropriate keywords are
already in the file (also, it makes it easier to change parameters with control panels).

Note that the following commands are processed in the order they are specified
in the view file. Thus if there are two commands controlling the same parameter, the
second command takes precedence. This does not apply to commands such aslight ,
texture , and others that specify a new set of parameters every time the command
occurs.

6.2.1 Setting turtle’s parameters

Line Contents Comments

angle factor: x 360�=x is the angle increment associated with the+, - , &, ˆ ,
\ , / and| symbols.

angle increment: x Set the angle increment associated with the+, - , &, ˆ , \ ,
/ and | symbols tox. The commandsangle increment andangle
factor are alternatives and the last one appearing in the file will be used.

initial color: i1 [i2] number between 0 and 255 specifying the initial value
of the index to the color map or a set of materials. The second number, if
present, specifies the index of the color or material of the back side of the
surface. The programcpfg then considers two different colors/materials for
each surface.

color increment: i1 [i2] number specifying the color or material index incre-
ment associated with the; and, for the front index and@; and@, for the
back index.

initial line width: x [j pixelsj shaded] the numberx represents initial line
width in the specified line style. If no string is listed after the number, then
Fs andGs are drawn as flat shaded polygons with a width in world units. The
width of line in this case is rescaled when thecpfg window is resized. If
pixels or just p is listed, flat shaded lines are drawn with their width in
pixels (or screen units). Ifshaded or simplys is listed, lines are drawn as
shaded cylinders in world units. In versions 3.0 and higher, line style should

34

be set by commandline style (see below in SectionLines, surfaces,
and generalized cylinders).

line width increment: x a number specifying the line width increment as-
sociated with the symbols# and! with units taken from the initial line width
specification.

initial scale: x the parameterx specifies the initial scale factor associated
with the turtle (the default is 1). All geometry will be scaled by this factor.
This initial value can be modified by modules@D, @Di, and@Dd.

scale multiplier: x modifies the default value (1) of the multiplicative factor
by which the turtle scale is multiplied or divided, when module@Dior @Dd
is interpreted.

6.2.2 Setting the view

viewpoint: x,y,z x; y; andz coordinates of the view point in world space3.

view reference point: x,y,z x; y; andz coordinates of the view reference
point in world space3.

twist: i tenths of degrees to rotate the image on the screen.

projection: type type identifies the desired projection, eitherparallel or
perspective . Perspective viewing mode is the preferred mode to use if
you intend to save a rayshade format object since rayshade also uses perspec-
tive viewing. Auto-centering and auto-scaling work only in parallel mode.

viewing angle: x the viewing angle of perspective projection (the default is
45�). It is ignored in parallel projection.

front distance: x the distance from the viewer to the front clipping plane in
perspective projection or the position of the clipping plane with respect to the
viewpoint in parallel projection (thus a negative value has to be used). Note
that modifying scale factor (see below) in perspective projection moves the
viewer closer or farther from the view point and the front distance has to be
adjusted.

back distance: x the distance from the viewer to the back clipping plane in
perspective projection or the the position of the clipping plane with respect
to the viewpoint in parallel projection. Note that modifying scale factor (see
below) in perspective projection moves the viewer closer or farther from the
view point and the back distance has to be adjusted.

3As described in the SGI Graphics Library Programming Guide.

35

scale factor: x a parameter indicating the size of the final image on the screen.
A value of 1.0 corresponds to full size. In perspective projection, the scaling
amounts to moving the viewer closer or farther from the view points, which
may require adjustments in front and back distance.

box: x: xmin, xmaxy: ymin, ymaxz: zmin, zmax sets a bounding box for the
model. The view is adjusted so the whole bounding box is visible (effective
only in parallel projection).

6.2.3 General drawing parameters

shade mode: i an integer defining the type of rendering to be applied:

1. simple fill,

2. interpolated fill,

3. Gouraud shade,

4. B-spline,

5. closed B-spline,

6. two sided,

7. wireframe.

This command is kept only for backward compatibility. Userender mode
instead.

render mode: mode wheremodedefines one of the following render modes:

fast similar to modefilled (see below), only spheres and disks are drawn in
wireframe.

wireframe the wireframe of all objects is visualized. If the image is output
to a postscript pairs of neighboring triangles are visualized as a single
polygon to reduce the number of lines.

filled all polygons representing a surface have the same color associated
with the surface. If materials are specified the diffuse color is used.

interpolated similar to modefilled. If the color or material at the beginning
of a straight line or cylinder (using modulesFs andGs) is different
from the color at the end, the two colors are interpolated along the line.
Similarly, the color of L-system defined polygons is interpolated, if the
colors at different vertices are different.

flat in this mode, the color of each polygon representing surfaces, lines,
or generalized cylinders is determined according to the position of the
polygon with respect to the light. If materials are specified, the color is
determined according to the material specification, using a single nor-
mal for the whole polygon. Otherwise, the colormap is used. In the

36

case of cylinders or generalized cylinders, the color of the polygon is
chosen from interval[col � diff refl; col+ diff refl], wherecol is
the color index associated with the surface anddiff refl is a range
defined using commanddiffuse reflection (see below). The
color is chosen according to the position of the polygon with respect to
the direction towards the first light source (other sources are ignored).
In the case of surfaces and tsurfaces, the color selection is more com-
plicated (see commandsurface reflection below).

shaded similar to modeflat. If materials are specified, the normal for each
polygon representing a surface can be different at each vertex of the
polygon, resulting in a smooth shading. If colormap is used, a color is
computed for each vertex of the polygon (see the commandsdiffuse
reflection andsurface diffuse below).

z buffer: flag a string identifying whether hidden surface elimination (using z
buffer) should be provided (on) or not (off).

cue range: x a number specifying the range of color indices used for depth cue-
ing. A value of 0 indicates no depth cueing. Usual values ofn are 10 to 100.
Depth cueing is not used in versions 3.0 and higher.

font: Xfont Xfontspecifies the font type to be used in@L interpretation using the hofs/cpfg3.0.fea-
tures/labelsX font specification. If the font is not found or not specified, the default is

-*-courier-bold-r-*-*-12-*-*-*-*-*-*-* .

interpretation past %: flag flagequal toon (default) allows the turtle to
interpret past symbol%which in subsequent step cuts a substring. When the
flag is set tooff , the symbols after%are not interpreted.

interpretation step: i an integer valuei specifies number of interpretedhofs/cpfg3.0.features/-
interpretation/-
interpr.step

symbols between an X event is checked. The interpretation during rotation or
after selectingNew model, New L-system, New viewor New Homomorphism
from the menu can be interrupted by an X server event. This allows one, for
example, to quit the program before the drawing is finished, to rotate much
quicker — just a part of the string is drawn (depending on the machine speed
and value ofi), or to reduce the number of redraw events when the window
is resized or exposed several times in a row. Settingi to -1 switches off this
feature,i.e. all modules are interpreted without checking for the next event.

rayshade objects: format [turtle flag] controls the output of instantiatedhofs/cpfg3.4.exam-
ples/homomorphism/-
rayshade.instancing

objects into rayshade file. If you specify a homomorphism production with
delimiter -o> instead of-->, during the rayshade output the predecessor
will be instantiated if it appears again (if it has the same parameters and
possibly also the same turtle parameters). The format string controls the
precision of object parameters (used for differentiating between two objects

37

created by the same modules with the same number parameters). For exam-
ple, if the format is set to%:2f , the precision of two decimal points is used
in comparisons (%f or%g results in the full precision comparisons).

The parameterflag is equal either toconsidered or ignored and it controls
whether even the turtle is considered when comparing two objects created by
the same module with the same parameters (if the objects are different the
second one is not an instantiation of the first one).

rayshade scale: scale specifies a scale factor which is applied to the rayshade
objects output bycpfg . This command can be used for scaling up and down
specific plants generated by different L-systems in different scales. Note: it
is usually better to use the parameter turtle scale (see commandinitial
scale).

6.2.4 Lines, surfaces, and generalized cylinders

line style: style specifies how the lines (represented by modulesF or G) are
drawn. Parameterstyleis one of the following:

pixel flat shaded lines are drawn with their width in pixels;

polygon lines are drawn as flat shaded polygons with a width in world
units;

cylinder lines are drawn as cylinders with the width specified in world
units.

tapered lines: flag controls whether lines or cylinders are drawn tapered or
not (flag is equal toon or off — the default ison).

polygonization level: n determines the level of detail used in generating
the polygons for spheres and cylinders. For stems, for example, there is2n+1

polygons around the circumference. A high value, such as 4, will generate
very smooth surfaces, but take longer to display. A lower value, such as 1
— the lowest, produces very rough approximations to these surfaces. If this
line is not specified, the default value is 2. This command is kept only for
backward ompatibility. Usecontour sides instead.

contour: i file defines a contour with integer idi specified by a set of 2d or 3dhofs/cpfg3.0.features/-
interpretation/-
gencylinders/-
contours

control points read from the filefile. For more details, see Section 6.4.2.

contour sides: n determines the level of detail used in generating the poly-
gons for spheres and cylinders (this initial value can be modified by module
@!). In the case of cylinders,n (n > 3) polygons around circumference is
drawn. For spheres, the closest upper power of two is used. If you want
to have smooth connections between cylinders and spheres for small values
of n, use a power of 2. If this command or commandpolygonization

38

level: is not specified, the default value is 8. Make sure this command
is not followed by commandpolygonization level later in the view
file, because then the parameter could be changed by the second command.

surface: id name.s x[s t] [tex] the character used to identify the surface, a string
containing the file name of the surface specification file (see Section 6.4.1),
and a surface scaling factor. The parameterss, t, andtex are optional. If
parameterss andt are included, they specify the level of detail used when
drawing patches. Patches are drawn usings polygons along the rows andt
along the columns. Ifs andt are not specified, they default to 5. Several
surfaces may be specified in this manner.

The last parameter (tex), if present, specifies a texture associated with the
surface. This value takes precedence over the texture index associated with
the turtle during the interpretation and all instances of this surfaces will have
the same texture. It is better not to include this parameter and set the texture
inside the L-system. Note that the parametertex can be present even if the
couple of parameterss andt is omitted.

line: id name.s x the character used to identify the line to be drawn, a string con-
taining the name of the surface specification file, and a surface scaling factor.

tsurface: id name.ray s the character used to identify the surface, a string con-hofs/cpfg3.0.features/-
interpretation/-
tsurfaces

taining the name of a file using rayshade-like file format, and a surface scal-
ing factors. The file should contain a set of triangles with 6 or 8 values per
vertex, specifying vertex point, vertex normal, and optionally texture coordi-
nates (see Section 6.4.3).

twist of cylinders: flag As a default, generalized cylinders are drawn inhofs/cpfg3.0.features/-
interpretation/-
gencylinders/twist

such a way that their twist is minimalized. If the twist is desired, setflag to
on .

background scene: list list is a list of file names (separated by a space, comma,
or semicolon). Each file contains a set of OpenGL-like graphics commands
(see Section 6.4.5) which specify additional objects drawn after the L-systemhofs/cpfg3.0.features/-

interpretation/-
gencylinders/-
backgroundscene

generated string is interpreted.

6.2.5 Color-map mode: Colors and lights

light direction: x,y,z x; y; andz coordinates of the vector indicating the di-
rection of light for shading purposes. This command should be used only
if the program is running in the colormap mode. In the material mode, use
commandlight .

ambient light: red, green, blue the ambient light specified as red, green and
blue components. This command is effective only in version 2.7 and lower.

39

diffuse reflection: i an integer number indicating the range of colors cho-
sen for lighting a shaded surface (effective only in colormap mode). The
surface colorcol is varied within the interval[col � i; col + i] to achieve a
color variation due to the different orientation of polygons representing the
surface with respect to the direction of the light source (only of the first light
source if more then one source is specified). The color of a polygon repre-
senting a cylinder or generalized cylinder is chosen in the following way. If
col is the color index associated with the cylinder,i is the diffuse refection
coefficient, ~N is the normal of the polygon, and~L is the direction towards
the light source, the resulting index is:

index = col + i � ~N � ~L:

surface ambient: x a number between 0 and 1 indicating the amount of am-
bient light present for shading bicubic surfaces and tsurfaces. This command
is effective only if the program is running in the colormap mode. In the ma-
terial mode, materials specify ambient light for surfaces. See the following
command for the description of computing the resulting color.

surface diffuse: x a number between 0 and 1 indicating the amount of dif-
fuse light present for shading bicubic surfaces and tsurfaces. This command
is effective only if the program is running in the colormap mode. In the
material mode, materials specify diffuse light for surfaces. The color of a
polygon representing a surface is chosen in the following way. Ifcol is the
color index associated with the surface,int is the intensity of the color (int =
(col=64)� floor(col=64)), amb is the predefined ambient intensity,diff is
the predefined diffuse intensity (diff = x), ~N is the normal of the polygon,
and~L is the direction towards the light source, the resulting index is:

index = 64 � int � (amb+ diff � abs(~N � ~L)):

background color: red, green, blue the background color specified as red, green
and blue components. Incpfg version 3.0 and above, this command is ig-
nored. The background color is then either the colormap color with index 0
(in the given set of 256 colors — controlled by the command line parameter
c) or the emission color of the material with index 0.

6.2.6 Material mode: Lights and textures

light: subcommand1 subcommand2 ... sets a light source. The subcommands
are:

O: x y z origin of a point light source (the default light source is a
point source, located at (0,0,1));

V: x y z vector specifying a directional source;

40

A: r g b ambient (default 1 1 1);

D: r g b diffuse (default 1 1 1);

S: r g b specular (default 1 1 1);

P: x y z e c specified a spotlight with the direction(x; y; z), expo-
nente , and cutoff anglec (default 0 0 -1 0 180);

T: c l q attenuation factors (constant, linear, and quadratic) (default
1 0 0).

More than one light can be specified by including several commandslight
into the view file.

texture: subcommand1 subcommand2 ... defines a texture mapped on surfaces,hofs/cpfg3.0.features/-
interpretation/-
textures/...

cylinders, conses, and generalized cylinders (not disks and spheres). The
subcommands are:

F: image specifies the image file name (a necessary subcommand).
The image width and height is clamped in such a way that the image
size is (2m � 2n).
Currently, it is possible to specify rgb, rle, and tga images (with the
proper extension).

H: filter for textures with texels bigger than image pixels. The pa-
rameterfilter is eitherlinear or near (only l or n can be used).
When set tolinear texture image is smoothed, while setting tonear
makes the texture pixels visible.
The default isnear.

L: filter for textures with texels smaller than image pixels The pa-
rameterfilter is eitherlinear or near (only l or n can be used).
When set tolinear more texture pixels are used to compute the
given pixel, while fornear, just one texture pixel is used to com-
pute the given pixel (which may result in aliasing).
It is also possible to use mipmaps in which case the OpenGL library
creates a smaller version of the texture (down to a size of1� 1) and
for smaller objects uses the smaller texture (resulting in faster dis-
playing). There are four modes of operation when selectin a proper
textel pixel:

mnn take the nearest mipmap image and the nearest pixel in this
mipmap. Produces some artefacts, visible especially when
moving object around or scaling it, but it is the fastest.

mln take the nearest mipmap image and the linearly interpolate
between neighboring pixels (still produces some artefacts).

mnl take the nearest pixels in both best choices of pixmaps and
interpolate between the values.

41

mll linearly interpolate between neighboring pixels in both best
choices of pixmaps and interpolate between the values. Pro-
duces the best result, but may be slower.

If just m is used, themll mode is selected.

The default isnear.

E: mode controls the way the texture is combined with the surface colors4.
The parametermode is one of the following:

modulate cpfg multiplies the surface color with the texel color;
decal only the texel color is taken and the surface is not

shaded;
blend interpolates between surface and texture color using

the color index value of the surface (only in colormap
mode).

The default ismodulate (onlym, d, or b can be specified):.

S: when present, the surface texture is mapped per surface not per
patch. The default is mapping per patch,i.e. texture coordinates are
derived froms and t coordinates of the B`ezier patch representing
the surface (boths, andt vary from 0 to 1). In case of mapping per
surface, first the surface boundaries are found and then the texture is
mapped intoz = 0 plane with respect to the computed boundaries.

R: ratio defines the aspect ratio of a texture mapped on cylinders and
generalized cylinders. The default is 1. A value greater than 1 will
cause the texture to be more stretched along the cylinder.

More than one texture can be specified by including several commandstexture
into the view file.

6.2.7 Tropisms

tropism direction: x,y,z x; y; andz coordinates of the vector indicating thehofs/cpfg3.0.features/-
interpretation/-
tropisms

direction toward which branches tend to bend. This command is kept only
for backward compatibility. Use the commandtropism instead.

initial elasticity: x a value specifying the susceptibility of a branch to
bending. This command is kept only for backward compatibility. Use the
commandtropism instead.

elasticity increment: x the value used to increment or decrement the elas-
ticity associated with thesymbol. This command is kept only for backward
compatibility. Use the commandtropism instead.

4See “The OpenGL Programming Guide”, Chapter 9, SectionModulating and Blending.

42

tropism: subcommand1 subcommand2 ... sets tropism parameters. The sub-
commands are:

T: x y z tropism vector (must be present);

A: ang angle (in degrees) with respect to the tropism vector that seg-
ments are trying to reach (for example, the angle of90� corre-
sponds to diatropism). The default is0�.

I: int intensity (global intensity of the tropism — default is 1);

E: ela initial elasticity (default is 0);

S: step elasticity step (default is 0).

torque: subcommand1 subcommand2 ... sets parameters of a movement that ad-
just rotates segments around their heading without modifying the heading
orientation. The subcommands are the same as for commandtropism ,
except that subcommandA: is ignored.

43

6.3 Animation file

An animation file contains parameters controlling frame by frame display of images
for animation purposes.

Line Contents Comments

double buffer: flag specifies whether double buffering ison or off during
animation. The default ison . In cpfg version 3.0 and higher, the command
line setting of single- or double-buffering takes precedence, because buffer-
ing has to be set at the point of execution (using command line parameters)
and cannot be changed afterwards. The only effect the commanddouble
buffer has is to set single-buffering even if the program starts with two
buffers.

clear between frames: flag specifies whether screen clearing between frames
is on or off . The default ison .

scale between frames: flag If the flag ison , the view is adjusted (in paral-
lel projection only) so the whole structure fits into the window (before the
scaling is applied — see commandscale in the view file). The default is
off .

new view between frames: on/off If the flag ison , the view file is reread hofs/environment/-
soil/2d.no.avoiding/-
animation

after each simulation step. Consequently, the view, textures, and all parame-
ters specified in the view file are updated. Used, for example, for updating a
background scene or a texture used for visualizing the environmental field5.
The default isoff .

swap interval: i minimum time (in tenth of a second) between swapping of
buffers in double buffer mode. The time is measured from the momentcpfg
begins to draw the frame to the moment it begins to draw the next frame. If
it takes longer to draw a frame, the delay between frames is then longer. The
default is 1.

first frame: i derivation step of the L-system string to be interpreted as the
first frame. The default is 1.

last frame: i derivation step of the L-system string to be interpreted as the last
frame. The default is the number of derivation steps (specified in the L-
system file).

step: i number of derivation steps between drawing (and recording) of frames. It
defaults to 1.

5The memory allocated bycpfg ’s (the resident size) increases with each New View. This increase may
be significant in animations in which the new view is invoked after each animation step. See Section 11.

44

frame intervals: frame1, frame2, from1 � to1, from2 � to2 step step1 ...
Allows the user to select frames or change the step during an animation. The
command is followed by:

� a list of specific frames and/or

� by ranges of frames without specifying the step (thus step of 1 is used)
and/or

� by ranges of frames with given step,

all divided by commas.

Example:

frame intervals: 1, 3-5, 8-12step 2, 25

In addition, every time a range is specified, it is possible to change the scal-hofs/cpfg3.0.features/-
interpretation/-
animate

ing or rotate the given object by a certain amount after each frame, using
commands:

rotate rx ry rz rotates by anglerx (in degrees) around axisx, an-
glery around axisy, and anglerz around axisz;

scale sx sy sz scales by valuessx, sy, andsz.

There can be only one commandrotate or scale present for a single
range.

Examples:

frame intervals: 1-99,100-150rotate 1.5 0 0

frame intervals: 1-99,100-150scale 0.9 0.9 0.9

If the commandframe intervals is specified in the animation file (re-
gardless the order), it takes precedence over the commandsfirst frame ,
last frame , andstep .

The command in the file can be in an arbitrary order. The file is not preprocessed,
thus comments may cause problems (at least a warning will be issued).

45

6.4 Other input files

6.4.1 Surface specification file

A surface specification file details a bicubic surface in B`ezier form composed of anhofs/cpfg3.0.features
arbitrary number of patches. The file has the following format, wherex, y, andz
are real values,i is an integer value and the remaining strings initalics represent text
strings.

xmin xmax ymin ymax zmin zmax

CONTACT POINT X:x Y: y Z: z

END POINT X:x Y: y Z: z

HEADING X:x Y: y Z: z

UP X: x Y: y Z: z

SIZE: x

patchname
TOP COLOR:i DIFFUSE: x
BOTTOM COLOR:i DIFFUSE: y
AL: patch1 A: patch2 AR: patch3
L: patch4 R: patch5
BL: patch6 B: patch7 BR: patch8
x11 y11 z11 x12 y12 z12 x13 y13 z13 x14 y14 z14
x21 y21 z21 x22 y22 z22 x23 y23 z23 x24 y24 z24
x31 y31 z31 x32 y32 z32 x33 y33 z33 x34 y34 z34
x41 y41 z41 x42 y42 z42 x43 y43 z43 x44 y44 z44

The first six lines of the file contain information about the surface as a whole. The
first line lists the minimum and maximum values of x, y, and z for the surface. The
next four lines detail geometry parameters required for integrating the surface with
the remainder of the structure generated bycpfg . The contact point specifies where
the turtle connects to the surface, the end point is where the turtle is positioned after
drawing the surface, and the heading and up vectors are matched to the corresponding
vectors of the turtle to determine the surface’s orientation. Size is a scaling parameter
giving the size in surface units to be considered as equivalent to the default unit length
associated with theF symbol incpfg .

The above section is followed by groups of ten lines, each describing one compo-
nent patch. As many ten-line groups as there are patches making up the surface are
specified. The first line gives the patch name. The next two lines contain patch-specific
rendering information giving colors and diffuse lighting coefficients for either side of
the surface. If the values are zero, the current turtle parameters are used. The next three
lines contain patch neighborhood information. This information is used when render-
ing to determine if smooth shading is required across a patch boundary. The adjoining
patches are specified by theirpatchnamein the appropriate position: above left (AL),
above (A), above right (AR), left (L), right (R), below left (BL), below (B), and below
right (BR). The lack of a neighboring patch in a given direction is indicated by a˜

46

symbol. The corresponding entries must match in the neighboring patch specification.
The last four lines contain patch control points, each line representing one row of four
points each with anx, y, andz coordinate.

6.4.2 Contour specification file

A contour specification file defines the cross-section (contour) of a generalized cylin-hofs/cpfg3.0.features/-
interpretation/-
gencylinders/-
contours

der. As a default, the contour is a disk. It is possible to use an arbitrary contour defined
as an open or closed three dimensional parametric curve consisting of several B-spline
segments.

The contour curve is specified by a set of control points. Each control point is
defined by two coordinates (in which case the third coordinate is assigned to be 0) or
by three coordinates. The file starts with a single header line:

num_points dimension type

where valuenum points specifies the number of control points in the file, value
dimension controls the dimension of the contour (2 or 3), and wordtype is either
open for open contours orclosed for closed contours.

An example of a contour file follows:

12 3 closed
0.16 -1.12 2.0
0.41 -1.04 1.0
0.58 -0.33 0.5
1.08 -0.04 0.2
1.08 0.49 0.0
0.49 0.54 0.0
0.33 0.91 0.1

-0.37 1.04 0.3
-0.70 0.62 0.2
-1.12 0.16 0.1
-0.87 -0.74 0.3
-0.41 -0.66 1.0

It is recommended to specify the control points in the counter-clockwise order (with
respect to the point [0,0,0]), because interpolation between clockwise and counter-
clockwise contour results in a twisted generalized cylinder.

Note that ff a contour includes some singularity (e.g.a sharp edge created by having
three control points at the same location), the normals are not correct.

6.4.3 Tsurface specification file

It is also possible to specify a surface not as a bicubic patch, but by a set of triangles.hofs/cpfg3.0.features/-
interpretation/-
tsurfaces

These triangles are input from a text file which follows a syntax of a rayshade input

47

file, except that the only lines that are processed are those with the keyword triangle at
the beginning of the line.

Following this keyword there are 3 lines, each containing 6 numbers, specifying the
x, y, andz coordinates of triangle vertices and the normal in each vertex. Optionally,
additional two numbers, definingu, andv coordinates of a texture at the vertex can be
included on each line.

Example (without texture coordinates):

triangle
-0.5 1 0 0 0 1

0 2 0 0 0 1
0.5 1 0 0 0 1

triangle
0.5 1 0 0 0 1
0 0 0 0 0 1

-0.5 1 0 0 0 1

and with texture coordinates:

triangle
-0.5 1 0 0 0 1 0.5 0

0 2 0 0 0 1 1 0.5
0.5 1 0 0 0 1 0.5 1

triangle
0.5 1 0 0 0 1 0.5 1
0 0 0 0 0 1 0 0.5

-0.5 1 0 0 0 1 0.5 0

6.4.4 Texture image file

Each texture specification (in the view file) includes a file name of an image used forhofs/cpfg3.0.features/-
interpretation/-
textures/...

the texturing. Any of the following format can be used:

� RGB — SGI RGB format;

� RAS — SGI colormap (RAS) format;

� TGA — Truevision Targa format;

� RLE — Utah raster toolkit rle format (produced, for example, by rayshade).

The specific format is recognized automatically by the extension (rgb, ras, tga, and
rle).

Both the image height and width has to be a power of two. If it is not the case, the
texture image is clamped and only a part of the texture appears on the textured surfaces.
If your texture size does not meet this condition, scale up or down your texture using
commandimscale infile outfile -xres x -y res y.

48

6.4.5 Background scene specification file

The background scene can be effectively used for defining additional objects aroundhofs/cpfg3.0.features/-
interpretation/-
gencylinders/-
backgroundscene

the simulated plant, such as obstacles. It can be also used during the simulation of
plant-environment interactions, for visualizing the environmental field together with
the plant.

The name of the background scene file is specified in the view file. Often, the
scene is read only at the beginning of the simulation, but it is also possible to update
it automatically before each interpretation step (animate file commandnew view
between frames) or manually (from a menu) for selected steps of the simulation.

Primitives of the background scene are defined in a text file using simple OpenGL-
like statements [8]. The commands can be divided into several groups discussed below.

Primitives
The following statements specify basic geometric primitives similarly as in the

OpenGL graphics library [8]. The coordinates of the vertices or the size of primitives
are defined with respect to a local coordinate system. It is possible to translate the ob-
jects or scale them by translating or scaling the coordinate system using transformation
statements (see below).

polygon x1 y1 z1 ::: xn yn zn specifies a polygon withn vertices(x1; y1; z1) to
(xn; yn; zn) (n � 3).

polygonuv x1 y1 z1 nx1 ny1 nz1 ::: xn yn zn nxn nyn nzn specifies a polygon with
n vertices(x1; y1; z1) to (xn; yn; zn) (n � 3). Each vertexi has also associated
a normal(nxi; nyi; nzi).

rectangle a b defines a rectangle with one vertex in(0; 0; 0) and edges of length
a, b along the positive axesx, y, respectively.

mesh x1 y1 z1 ::: xn yn zn specifies a rectangular mesh: vertices2k, 2k+1, 2k+3,
and2k + 2 define a single rectangle of the mesh (n = 4 + 2k, k � 0).

box a b c specifies a box with one vertex in(0; 0; 0) and edges of lengtha, b, andc
along the positive axesx, y, andz, respectively.

cone r1 r2 h specifies a cone with its axis alongy axis, radius at the base equal
to r1, radius at the top equal tor2, and heighth.

cylinder r h specifies a cylinder with its axis alongy axis, radiusr, and height
h.

sphere r specifies a sphere with center at(0; 0; 0) and radiusr.

Material specification
There is only one statement in this group.

49

material n1 n2 ::: n17 specifies the current material using 17 values that follow
the keywordmaterial: four values for ambient color (red, green, blue, and al-
pha, all in the range of 0-1), four for diffuse color, four for specular color, four for
emissive color, and one for specular exponent (a value between 0 and 128). The
alpha value controls the opacity of the surface (1 for opaque, 0 for transparent).
This material is applied to all subsequently defined primitives.

Transformations
All primitives are defined with respect to a local coordinate system. The system

can be modified by transformation statements, listed below. The coordinate system is
expressed by a single matrix, specifying the transformation necessary to map the world
coordinate system into the current local system. Thus every rotation, translation, or
scaling modifies only the current transformation matrix. This approach is equivalent to
the use of the modelview matrix in OpenGL [8].

loadidentity sets the current transformation matrix to identity (i.e. the current
local coordinate system is equal to the world coordinate system).

loadmatrix a1 a2 ... a16 sets the current matrix. The first four values spec-
ify the first column of the matrix, next four the second column,etc.

pushmatrix stores the current transformation matrix on a matrix stack.

popmatrix retrieves a matrix from the stack and sets it as the current transforma-
tion matrix.

translate tx ty tz translates the local coordinate system by vector(tx; ty; tz) (by
modifying the current transformation matrix).

rotate angle vx vy vz rotates the coordinate system around vector(vx; vy; vz) by
angle degrees.

scale sx sy sz scales the local coordinate system by factorssx, sy, andsz in axis
x, y, andz.

multmatrix a1 a2 ... a16 multiplies the current transformation matrix by specified
matrix.

Example
A sample background scene is specified below.

material 0.1 0.1 0.1 1 /* subsequent surfaces are grey */
0.16 0.21 0.27 1 /* with no specular reflections */
0 0 0 1 /* and no emissive color */
0 0 0 1
0

50

pushmatrix
translate 3 -20 -3
scale 1 0.7 0.7
sphere 15 /* ellipsoid */
popmatrix

pushmatrix
translate -14 -55.0 8
cone 15 2 14 /* cone */
popmatrix

translate -10 -65 0
box 30 5 30 /* box */

The file is preprocessed bycpfg , thus macros or comments can be part of it.
The format of the background scene file is also used in transferring the polygons

representing selected modules from the plant simulator to the model of the environ-
ment. In addition, the same format can be used for the output of the generated struc-
tures from the plant simulator, in which case the file also includes statements specifying
light sources and the projection (Section 7.4).

51

7 Output files

The cpfg menu allows the user to save output files in a number of different formats.
Output file names can be specified on the command line with defaults derived by re-
placing the suffix .l of the L-system file with a different suffix:.rgb , .ras , .tga ,
.rle , .ray , .ps , .str , .strb , .gls , .vv , or .iv depending on the format
chosen. The file name can also be modified interactively through the menu.

The supported output formats are:

� RGB — Saves the current window in SGI RGB format. The file name may be
specified on the command line as-rgb file.rgb .

� RAS — Saves the current window in SGI colormap (RAS) format. The file name
may be specified on the command line as-ras file.ras .

� TGA — Saves the current window in Truevision Targa format. The file name
may be specified on the command line as-tga file.tga .

� RLE — Saves the current window in Utah raster toolkit rle format. The file name
may be specified on the command line as-rle file.rle .

� Rayshade — Outputs a complete file in rayshade 4.0 format. The viewing param-
eters produce the same view as cpfg, provided that the perspective view is used.
Surface color is chosen according to the current color map, using the basic color
modified by the ambient light parameter (but not by the diffuse light component).
The file name may be given on the command line as-ray file.ray .

� Postscript — Output the generated string in PostScript (see Section 7.2). The file
name may be specified on the command line as-ps file.ps .

� String — Output the generated string in a text format (see Section 7.3). Two
decimal digits of parameter values are output. The file name may be specified on
the command line as-str file.str .

� String (binary) — Output the generated string in a binary format (see Section 7.3).
The file name may be specified on the command line as-strb file.strb .

� Graphics Library statements — Output the generated geometry in a local text
format (see Section 7.4). The file name may be specified on the command line
as-gls file.gls .

� View Volume — Output the computed bounding box into a text file. The file
format is as follows. The file consists of a single line:

box : x : xmin; xmax y : ymin; ymax z : zmin; zmax

The file name may be specified on the command line as-vv file.vv .

52

� Inventor — Output in SGI Inventor format. The file name may be specified on
the command line as-iv file.iv . This option requires the inventor shared
libraries and for some executables may not be available.

The following sections describe some of the supported output formats in more detail.

7.1 Rayshade output

The programcpfg allows the user to output the geometry into a rayshade format, mak-
ing it possible to render the generated objects with a high degree of realism. Rayshade
is a public domain ray tracer developed by Craig Kolb.Cpfg currently supports
rayshade version 4.0, which is available atftp://graphics.stanford.edu/pub/rayshade/rayshade4.0
The manual is also available for download from the same site.

The general structure of a file output bycpfg is as follows:

#ifndef NOSURFACES
/* material definitions */
#endif

#ifndef NOHEADERS
/* view settings */
/* screen resolution */
/* background colors */
/* lights */
#endif

#ifdef BBOX
/* defines only the bounding box */
#else
/* predefined surfaces (a set of triangles for each) */
name l grid 20 20 20
/* surface triangles */
end

/* instantiated objects */

name plant.ray grid 20 20 20
/* objects defining the plant */
end
#endif

/* rescale the object using specified values */

#ifndef NOHEADERS
/* define an instance of the object */

53

#endif

This structure allows the user to either use the rayshade file on its own or include it
in a scene comprising several plants. In the second case, the surfaces and the view may
be set by the main rayshade file that includes all plant’s files and the local definitions
can be ignored (by defining the macroNOSURFACESor NOHEADERS). Also, only
bounding box can be defined for a fast preview of the scene (using the macroBBOX).

The following sections describe each feature of the rayshade file.

7.1.1 Materials

The rayshade file includes definitions of all materials specified in the material file used
by cpfg . In the case a colormap is defined, only colors actually used bycpfg objects
are output to the file. In rayshade, the material definition uses keywordsurface(that
is why the macro mentioned above is calledNOSURFACES), followed by the assigned
name. The name consists of the letter ’s’ and the index of the material (or color)
corresponding to the index used bycpfg , increased by the index of the main material
set or colormap multiplied by 256 (usually, the colormap index is equal to 1 and all
surface indexes are increased by 256).

If cpfg uses materials, all material components except emissive color are included
in the surface definition. The transparency parameter (only one per surface, not like in
OpenGL where each color can have its own alpha channel) is determined from the
alpha value of the emissive color.

If cpfg uses a colormap, only ambient and diffuse colors are specified, both equal
to ther; g; b color values specified by the colormap.

7.1.2 View parameters and lights

The view and lights set in the rayshade file correspond to the view and lights set by the
cpfg ’s view file. (The object is rotated and scaled so it is oriented the same way as
on the screen, using a transformation matrix specified together with the instance of the
object at the end of the rayshade file.)

Only perspective projection can be defined in the rayshade file. Consequently, the
parallel projection used bycpfg has to be converted to perspective projection. This
process often produces views which are inconsistent with the view on the scene. For
the best results, it is advisable to use perspective projection incpfg if the plant is to
be output to rayshade.

7.1.3 Bounding box

To be able to preview a scene that consists of a vast number of plants, it is very con-
venient to use only a box representing the bounding box of the plant. Note, that the
bounding box is incorrect, if the rayshade file is output in the off-screen mode, during
which the bounding box is not computed. It is possible, though, to force computing of

54

the bounding box by outputting also the view volume file (e.g. directly to /dev/nullif
you do not want to keep it, using command line parameters-vv /dev/null).

7.1.4 Predefined surfaces

All predefined surfaces specified in thecpfg ’s view file are included in the rayshade
file. Each surface is named using the single letter name defined in the view file. The
surface definition consists of a grid of fixed size (20 � 20 � 20) containg a set of
triangles. The triangles are defined by their vertices, and possible also normals and
texture parameters at each vertex. The normals are included if the smooth shading
is used bycpfg . Since there are two ways of mapping a texture on a surface, it
may happen that there are two surface definitions in the file (with index 1 and 2 — as
the second letter of the name), each with different texture coordinates associated with
vertices.

7.1.5 Instantiated objects

It is possible to take advantage of instantiation not only for surfaces, but also for parts
of the plant, such as complex leaves or flowers. If the user specifies a homomorphism
production with delimiter-o> instead of--> , during the rayshade output the prede-
cessor will be instantiated if it appears again (if it has the same parameters and possibly
also the same turtle parameters). The precision of object parameters (used for differ-
entiating between two objects created by the same modules with the same number
parameters) can be controlled by specifying a format string in the view file (using the
commandrayshade objects — see Section 6.2). It can be specified whether even
the turtle is considered when comparing two objects created by the same module with
the same parameters (if the objects are different the second one is not an instantiation
of the first one).

Sometimes it may happen that an empty object is defined and rayshade would core
dump on the file. Currently, a tiny transparent sphere is defined in such cases. This
could be better solved by noting which instances are empty and not using them in other
places.

ADD: It would be nice to include an example of rayshade instancing (-o> productions)
where turtle’s parameters are considered.

7.1.6 The main object

The name od the main object is generally equal to the name of the rayshade output file
(without the path). The whole object is enclosed in a grid of resolution20� 20� 20

to speed up the rendering.
Sometimes, though,cpfg may define several plants positioned further away from

each other and it is more efficient to use a separate grid for each plant. For this purpose,
the user can use module@J in the L-system string (see Section 6.1.9). The module

55

@J(size1; size2; size3) closes the current grid and starts a new grid of a given size (in
number of voxels). In this case, there are several objects defined, and the main object is
defined at the end of the rayshade file as a list of the parts specified by the@Jmodule.

The objects use references to surfaces and instantiated parts, defined earlier in the
rayshade file. In addition, it is possible to define a reference to a rayshade object defined
in another file, by specifying the name of the object as a parameter of the module@I
(see also Section 6.1.9). In this case, an instance of the object with the given name is
created at the current position, with the orientation given by the turtle, and the scale
specified as the second parameter of module@I.

Before the instance of the main object is defined at the end of the rayshade file (after
the#ifdef NOHEADERSstatement), the object is possibly scaled using the scale param-
eter defined in thecpfg ’s view file (using the commandrayshade scale:). Note,
it is usually better to use the parameter turtle scale (the view file commandinitial
scale) which affects all primitives and the final scaling is not necessary.

Note that cylinders and cones are defined as a single primitive, thus they always
appear smoothly shaded.

Also, the rayshade format does not support double-sided surfaces, thus if a sur-
face has associated two different materials incpfg , in the rayshade file, only the top
material is specified for this surface.

Rayshade reports triangles with edges shorter than 0.00001 as degenerate triangles
and cylinders or cones with length below 0.00001 as degenerate cones. The problem
is that if these primitives are degenerate they are ignored and it may happen that there
will be an object containing no primitives which will cause rayshade to core dump. To
avoid this, make sure, for example, that you are not using generalized cylinders which
starts or finish with width 0.

7.2 Postscript output

Similarly as for the rayshade output, an attempt was made to produce a PostScript file
which is essentially a snapshot of the window. Therefore, the file consists of the L-
system object in a box of the background color, positioned the same way as on the
screen (even in the case the user interactively rotates and scales the object before the
output, regardless the used projection). Care must be taken if standard black and white
output is desired for inclusion in text documents (such as in LATEX). For this purpose,
the background is generally made white and the foreground black (or shades of grey).

The followingcaveatsapply:

� Textures are not supported.

� Primitives are not drawn with interpolating colours, ascpfg draws them. An
attempt is made to guess the best colour.

� PostScript has no Z-buffer and no additional depth testing is performed during
the output, thus an object located later in the string will overlap another object

56

located earlier in the string even if on the screen it appears behind the earlier
specified object.

Note that if your version ofcpfg supports Inventor output, it may be preferable to out-
put your models as Inventor objects, and then print them to PostScript using a facility
such asivprint or SceneViewer .

7.3 L-system string

L-system generated string can be output as a text or binary file. An example of a text
file is:

A(3,0.25)F(3)[+FA(1,0.5)]
-F(4)@O(0.333333)A(2,0.75)

The numbers are output using maximum possible number of digits after the decimal
point (e.g.1/3 is output as 0.333333) unless it is possible to output less digits (e.g. for
3, 0.25,etc.).

The binary file starts with a text header:

L-system string: length_in_bytes generation_step_no

followed bylength in bytesbytes of the string in internal representation in which mod-
ule parameters are stored as 4-byte floats.
Example:

L-system string: 47 1
A(????,????)F(????)[+FA(????,????)]-F(????)@O(????)A(????,????)

7.4 Graphics Library Statements format

The programcpfg can output the geometry in a format, similar to the format of a
background scene (Section 6.4.5). Thus the geometry produced in one simulation can
be included as a background scene in another model. In addition, the GLS format is
used by some environmental programs (e.g. soilor arvo) to define obstacles.

The output file can include all commands specified in Section 6.4.5 plus the fol-
lowing commands:

Lighting:

clear red green blue this command clears the window and sets the background to
a given color. Usually included at the beginning of the file.

light posx posy posz posw specifies a light source by four homogeneous coordi-
nates of light position. Ifposw is equal to 0 the light is directional. The color of
the light source is always white.

57

Projection:

ortho minx maxx miny maxy front dist back dist specifies an orthographic pro-
jection the same way as OpenGL library does.

perspective viewing angle front dist back dist specifies a perspective pro-
jection the same way as OpenGL library does.

lookat posx posy posz refx refy refz upx upy upz defines the view by speci-
fying the camera position, the view reference point and optionally also the up
vector.

Matrices and transformations:

matrixmode 0=1 sets the current matrix (0 for modelview matrix, 1 for projection
matrix).

7.5 Inventor output

Cpfg can output the generated objects into Inventor format, if the executable was com-
piled on the system which has Inventor libraries installed on it. The output consists of a
main file containing the definition of all objects except predefined surfaces, which are
stored in separate files, one file per surface. (Note that sometimes there may be two files
per surface, with two different sets of texture coordinates — see also Section 7.1.4.)

The inventor output has the following features:

� The camera is not defined in the file, thus the initial view in the inventor viewer
(e.g.ivview will not correspond to the view in thecpfg window).

� Textures are supported, although Inventor always smoothens the texture image.
Consequently, it is not possible to have a sharp chessboard texture, for example.

� Regardless the used rendering mode (shaded, flat, wireframe, etc.), the resulting
objects are always smoothly shaded.

� Cpfg generated Inventor files have sometimes too big memory requirements
(possibly related to too many items in a group).

� Directional lights do not convert properly to Inventor output (they are defined as
a very distant point source).

� If a predefined surface is not included in the view file, the created input file
cannot be viewed (the viewer does not read such a file).

ADD: Specify under what conditions which of the statements appear, assumedly by
reference to the view file parameters. Although currently,cpfg outputs the viewing
parameters in a single projection matrix.

58

8 Communication with environmental process

8.1 Open L-systems6

Open L-systems are a generalization of the concept of query modules?P , ?H , ?L,
and?U used in environmentally-sensitive L-systems [6] (see also Section 6.1.9).Com-
munication modulesof the form?E(x1; : : : ; xm) are used both to send and receive
environmental information represented by the values of parametersx1; : : : ; xm (Fig-
ure 4). Specifically, parametersx1; : : : ; xm act as an interface between the plant and
the environment. They can be set by the plant model and transferred to the environment
or set by the environment and transferred to the plant model.

This interface is sufficient for receiving the information from the environment, but
the environment also has to obtain information about the position and orientation of
plant organs affecting the environment or being affected by it. Thus in addition to
parameters of a communication module, the environment receives the position and
orientation of the communication module (retrieved from the current turtle parameters),
and a module following the communication module (with its parameters).

To accommodate the exchange of information between the plant and its environ-
ment each derivation step (after which the interpretation step can be possibly performed7)
is followed by anenvironmental step. In the environmental step, the string resulting
from a derivation step is scanned from left to right to determine the state of the turtle
associated with each symbol. This phase is similar to the graphical interpretation of
the string, except that the results need not be visualized. Upon encountering a com-
munication symbol, the plant process creates and sends a message to the environment
including all or a part of the following information:

� the address (position in the string) of the communication module (mandatory field
needed to identify this module when a reply comes from the environment),

� values of parametersxi,

� the state of the turtle (coordinates of the position and orientation vector, as well as
some other attributes, such as the current line width),

� the type and parameters of the module following the communication module in the
string (moduleB in Figure 4). It is also possible to include the graphical represen-hofs/environment/-

MonteCarlo/test.runstation of this module. Specifically, a set of triangles resulting from the interpretation
of the module (or of its homomorphic image — Section 6.1.7) is transferred to the
environment.

The environment processes the received information and returns the results to the
plant model using messages in the following format:

� the address of the target communication module,

6This section is incorporated from [2].
7It would be nice to have an option for having interpretation step both before and after the environmental

step, only before it or only after it.

59

env. step

interpret

 ... A(a1,...,ak) ?E(x1,...,xm) B(b1,...,bn) ...

... A(a1,...,ak) ?E(y1,...,ym) B(b1,...,bn) ...

environment
+turtle

derive

Figure 4: Information flow during the simulation of a plant interacting with the envi-
ronment, implemented using an open L-system

� values of parametersyi carrying the output from the environment.

The plant process uses the received information to set parameter values in the commu-
nication modules (Figure 4).

Note that by preceding every symbol in the string with a communication module it
is possible to pass complete information about the model to the environment. Usually,
however, only partial information about the state of a plant is needed as input to the
environment, as illustrated in the example below. In addition, the use of addresses
makes it possible to send replies from the environment only to selected communication
modules. Proper placement of communication modules in the model, combined with
careful selection of the information to be exchanged, provide a means for keeping the
amount of transferred information at a manageable level.

You can use the communication modules in homomorphism productions, but only
to send information to the environment. The environment will not be able to respond,
because these modules exists only temporarily during the application of homomor-
phism to a given module. It is fine to use the communication modules in decomposition
productions.

The following simple example illustrates the operation of an open L-system. Thehofs/Thesis/5.Open-
Lsys/Sierpinskimodel creates a branching structure consisting of straight line segments. The structure

grows by adding a pair of segments to the end of existing branches unless a branch col-
lides with another one. The occurrence of a collision is determined by the environment.
To accomplish its task, the environment receives the information about the position of
segment’s end points and tests whether two points occupy the same place or not. The
listing of the environmental process can be found in Section 8.4.5.

60

The L-system model is as follows.

L-system 3

! : ?E(0)

p1 : ?E(c) : c == 0 ! [+F=(180)?E(0)]F ?E(0)

The end point of a segment is represented by a communication module?E with one
parameter. This parameter is initialized to 0, and if the point collides with another
point, the environment sets it to 1. If the point does not collide, the parameter stays 0.
Productionp1 then creates two new branch segments only for points with parameter 0.

The communication is set up in such a way that with each communication module,
the environment obtains its identification (the address in the string) and its position.

The first few steps of the simulation are described below.
Initialization. The simulation begins with a single point?E. Before the first derivation
step, the environmental step is performed and the environment receives the following
information:

address : 0; ?E(0); position : 0; 0; 0:

It is convenient to think of the address as the number of modules before the communi-
cation module. The position is equivalent to the initial position of the turtle. The point
obviously does not collide with another point, thus the environment does not reply (i.e.
sends an empty message) and the parameter of the module?E stays 0.
Step 1.The environmental step is followed by a derivation step, in which production
p1 is applied, replacing module?E with the string:

[+F=(180)?E(0)]F ?E(0)

which is interpreted for visualization purposes (Figure 5a). Now the environment re-
ceives two modules:

address : 4; ?E(0); position : 0:5;�0:866; 0;
address : 7; ?E(0); position : �0:5;�0:866; 0:

These two points do not collide and the environment again does not reply.
Step 2.In the next derivation step, productionp1 is applied to both modules?E result-
ing in the string:

[+F=(180)[+F=(180)?E(0)]F ?E(0)]F [+F=(180)?E(0)]F ?E(0)

visualized in Figure 5b. In the following environmental step, the environment receives
four modules:

address : 8; ?E(0); position : 0;�1:7321; 0;
address : 11; ?E(0); position : 1;�1:7321; 0;
address : 18; ?E(0); position : 0;�1:7321; 0;
address : 21; ?E(0); position : �1;�1:7321; 0:

61

g

a

b

c

d

e

f

Figure 5: Sierpinski triangle generated by open L-system 3 in 1, 2, ..., 6, and 32 steps

Since the first and third module occupy the same point, the environment returns a mes-
sage in the form:

address : 8; ?E(1);

address : 18; ?E(1):

The plant simulator receives this message and updates the parameters of the specified
communication modules resulting in the string:

[+F=(180)[+F=(180)?E(1)]F ?E(0)]F [+F=(180)?E(1)]F ?E(0)

Step 3.In the next derivation step, only the second and fourth module?E is replaced
by a pair of branches, resulting in a structure shown in Figure 5c.

The simulation then continues generating a branching structure which is similar to
the Sierpinski gasket (Figure 5g).

The implementation issues related to the incorporation of open L-systems and the
specified communication interface to the plant simulatorcpfg are discussed in the
following section.

8.2 Implementation of the modeling framework

In order to implement the designed modeling framework, the L-system based plant
modeling programcpfg has been extended by incorporating open L-systems into it

62

Plant
model
(L−system)

Plant
simulator

Model of
the environment

Interface
plant−
environment

Environ−
mental data

C
O
M
M
U
N
I
C
A
T
I
O
N

C
O
M
M
U
N
I
C
A
T
I
O
N

Communication
specification

Figure 6: Organization of the software for modeling plants interacting with their en-
vironment. Shaded rectangles indicate components of the modeling framework, clear
rectangles indicate programs and data that must be created by a user specifying a new
model of a plant or environment. Shaded arrows indicate information exchanged in a
standardized format.

and by including a special purpose communication library. The library facilitates the
exchange of information between the plant model and the environmental process. Con-
sequently, the library also has to be included in a program simulating the environment.

The parameters of the communication are defined in acommunication specification
file, shared between the programs modeling the plant and the environment (Figure 6).
The communication specification file is a text file with commands specifying the name
of the environmental program (with possible options and input files), the format of data
the plant model sends to the environment, and the type of communication between the
programs.

For example, the communication in the example from the previous section (L-
system 3) has been defined using the following specification file:

executable: ulam
turtle position:%.5g %.5g
communication type: pipes

The environmental program is calledulam (because it was originally used for gener-
ating Ulam’s patterns — see [2]), the data between the two processes are transferred
using a pair of Unix pipes, and only the turtle position is sent together with each com-
munication module (in addition to the module’s address).

The specification of the environmental program is included mainly for the plant
simulator, which controls the communication and executes the environment at the be-
ginning of the simulation.

63

To reduce the amount of transferred data, as a default, only the minimum infor-
mation is transferred from the plant simulator to the environment, namely the address
of the communication module and parameters of the module. All additional informa-
tion, such as the module following the communication module (and its parameters),
the turtle position, orientation, current line width,etc. , has to be specified in the com-
munication file (see Section 8.4.1 for the list of all commands). On the other hand, the
environment responds by sending selected communication modules with their address
and parameters.

The communication between the two programs is implemented using mechanisms
provided by the underlying operating system (Unix). Thus the data can be exchanged
using a pair of Unix pipes, a pair of sockets, a pair of files, or shared memory. There are
always two data streams, one for data going from the plant model to the environment
and the other one for data coming back. The variety of communication mechanisms
make it possible to choose one that provides an efficient data transfer between the pro-
cesses (using pipes, sockets, or shared memory) or to choose a slower communication
(using files) allowing the user to access the exchanged data (Section 8.4.6).

In the case of pipes or sockets, the synchronization of communication is straight-
forward: one of the processes waits for the input from the other process on a designated
pipe or a socket and the system suspends its operation during that time. In the case of
files or shared memory, the communication is synchronized using a pair of semaphores
which inform the processes about the availability of data in a shared memory or a des-
ignated file.

The communication follows these steps (Figure 7):

1. Plant simulatorcpfg is executed. It reads the communication specification file,
establishes data structures necessary for the communication, starts the environ-
mental process, and waits for the confirmation from the environment.

2. The environmental process reads the communication specification file, connects
itself to data streams, confirms its initialization, and waits for the first transmis-
sion from the plant simulator.

3. The plant simulator starts the simulation and performs an environmental step
to process the communication modules specified in the axiom. The communi-
cation modules are transferred to the environment using the specified streams.
The last communication module in the string is followed by a reserved end-of-
transmission message. The plant simulator then waits for data from the environ-
ment.

4. The environment recognizes the beginning of transmission (by being able to read
from a pipe or a socket, or by checking a given semaphore) and starts receiving
the data. After encountering the end-of-transmission message, the environment
processes the queries and starts sending the response back to the plant simulator.
The environment terminates the transmission by a similar end-of-transmission

64

executed
sending confirmation

start env.step:
begin transmission

suspended

sending data

suspended

end of transmission

process data
begin transmission

receiving response

end of transmission

simulation step

receiving data

sending responses

suspended

suspended

Plant simulator

executed

Environmental process

Figure 7: Flow of control during the simulation

message. It then waits again for the plant simulator (returning to the beginning
of step 4)8.

5. The plant simulator receives the data coming from the environment and sets the
parameters of communication modules accordingly. After encountering the end-
of-transmission message, it performs a simulation step and returns to step 3.

The simulation is terminated by the plant simulator which sends a special terminate
message to the environment.

If you are using shared memory or files for the data exchange betweencpfg and
the environmental program and one of the program crashes, the other one will not be
terminated and you have to do so manually. (You can list all your processes usingps
-u your login name and kill the process bykill process id . The process
id (PID) is listed byps .) Also, the semaphores and the shared memory stays allocated
and after a while you may not be able to receive more semaphores from the system. In
this case, useipcs to list all your semaphores and shared memory andipcrm -m
id or ipcrm -s id to remove them.

8The organization of communication, with different channels used to send information to and from the
environment, makes it also possible to send the response immediately — this situation is not captured in
Figure 7.

65

Because of the great variety of environmental phenomena, there is no “universal”
model of the environment. Various phenomena can be modeled by different environ-
mental programs that use a specific representation of the environment suitable for par-
ticular problems.

To be able to communicate with the plant simulator, an environmental program has
to be compiled with the communication library. The library provides a programmer
with a set of functions which have to be called in a given order. Section 8.4.2 provides
a list of functions of the communication library and explains how to use them in an en-
vironmental program. The section also includes the source code for the environmental
program used as an example in Section 8.1.

8.3 Visualization of the environment

Visualization is an essential part of every simulation. It is often useful to visualize not
only the plant model but also the environment (creating one composite scene), in order
to better understand the interaction between them. The plant simulatorcpfg provides
the user with many useful graphical features [3] making it possible to visualize both
the plant and the environment.

The environment can be visualized in two ways:

1. As the background image for the visualized structure. For this purpose, the envi-hofs/environment/-
density/Cohenronmental process outputs an image file which is used by the plant simulator to

define a texture on a rectangle representing the background.

2. As a set of primitives, forming abackground scenewhich is displayed togetherhofs/environment/-
soil/3d.no.avoiding/-
tapered

with the generated plant. The primitives are read from a text file containing a list
of OpenGL-like statements (Section 7.4).

In the case where the environment is static, it is sufficient to read the texture image
or the background scene file once at the beginning of the simulation. In the examples
in this chapter, though, the environment is changing over time, thus it is necessary to
update the image or the background scene every time the environment changes.

Consequently, the background file is periodically updated by the environmental
process and read by the plant simulator after each simulation step, before the visual-
ization. To limit the amount of transferred data, the environmental process can create
the background files only at specific simulation steps. The number of the current sim-
ulation step is sent by the plant simulator together with the message about the end of
transmission (after all communication modules from the string are sent to the environ-
ment — see Section 8.4.4).

8.4 Two process communication

8.4.1 Specification of the communication

The communication between the plant simulatorcpfg and an environmental pro-
gram is initiated when the simulator is executed with a command line parameter-e

66

commspecfile. The communication specification filecommspecfile is a text file with
the following commands:

communication type:pipes/sockets/memory/filesSpecifies the type of communica-
tion between the plant simulator and the environmental process. The default
is pipes, because pipes provide the most efficient means of communication on a
single machine.

Important note: The standard input streamstdinand the standard output stream
stdoutmust not be used in an environmental process, because during the com-
munication, the input and output pipes are connected to these streams.

In the case of the file communication, the plant simulator creates two files.to fieldXXXX.0
and.from fieldXXXX.0, whereXXXXis equal tocpfg ’s process id (as returned
by the system).

The communication through memory or files is synchronized by a pair of Unix
semaphores, which are set automatically by the plant simulator. The size of the
shared memory (in bytes) and communication files (in number of communication
modules) as well as the name of communication files are fixed. These values
do not limit the amount of transferred data, since the communication is done
piecewise. For debugging purposes, it is possible to specify the maximum size
of communication files as a parameter following the keywordfiles.

executable:binary [field params] Specifies the executable of the environmental pro-
cess and its optional command line parameters.

following module: yes/noDefines whether the module following the communication
module is sent to the environmental process. The default isno9.

turtle position: format string
turtle heading: format string
turtle left: format string
turtle up: format string
turtle line width: format string
turtle scale factor: format string

These commands define C-like format strings for those turtle parameters, which
are sent to the environment (currently, only the parameters listed above can be
transferred). Often, only the position and the heading vector are necessary, and
the rest can be omitted. Since the information is being sent in a text format, it
may be desirable to use only a few decimal places or to omit thez axis when
possible. For example, commands:

turtle position:P:%.3f %.3f
turtle heading:H:%.1f %.5f

9In the current version of the programcpfg , the default value isyes.

67

specify that only thex andy coordinates of the turtle position and heading vector
are transferred to the environment (as floating point numbers with the precision
of 1, 3, or 5 decimal places). Letters in format strings are helpful for debugging
purposes when using files for the communication but they are not mandatory.

interpreted modules: all orM1(n1), M2(n2), ...,Mn(nn) It is possible to include a hofs/environment/-
MonteCarlo/test.runsset of polygons representing moduleX (following the communication module

?E) with the data transferred to the environmental process. The moduleX is
interpreted when:

� only the wordall is specified,

� (ni) is not present andMi = X , or

� Mi = X andX hasni parameters (currently, it is not possible to specify
ni > 6).

If homomorphism or decomposition productions can be applied to the moduleX
(Section 6.1.7), all geometry created by these productions is sent to the environ-
ment.

The geometry is transferred as a set of polygons in a text format (see the output
format of OpenGL-like commands described in Section 7.4).

verbose:on/off Switches on or off the verbose mode, which informs the user about the
details of the communication.

8.4.2 Environmental process

Flow of information
An environmental process communicating with the plant simulator operates as a

slave,i.e. the communication is controlled by the plant simulator (the master). Gen-
erally, the environmental process waits for the data from the plant simulator. The data
consists of a communication module, its address, and possibly turtle parameters or the
module following the communication module. Afterwards, the process sends back the
communication modules with modified parameters and waits for new input in a loop.

There are two possible modes of operation of an environmental process, (Figure 8):

1. immediate answer — the parameters of a communication module obtained from
the plant simulator can be updated immediately, because the results depend on
the local properties of the environment and do not depend on the other communi-
cation modules. This mode of operation is suitable, for example, for simulation
of static environments that are too complex to be expressed in environmentally-
sensitive L-systems.

68

Immediate answer Delayed answer

Update environment
Process

Output comm. module
CSSendData Output comm. module

CSSendData

Input comm. module
CSGetData, CSGetString

Input comm. module
CSGetData, CSGetString

AnswerQuery
CSBeginTransmission

CSEndTransmission

new module, simulation
step is irrelevant

after new simulation step

Figure 8: Two possible modes of operation of an environmental process

2. delayed answer — the reply depends on the information obtained from other
communication modules in the string, due to the propagation of information
through the environment. Thus all communication modules from the string have
to be first input (and stored in internal data structures) before the parameters of
the communication modules can be properly set. This mode of operation is usu-
ally used in the case the plant is affecting the environment, because the response
then depends on changes in the environment, introduced by other communication
modules.

The functions used to control the flow of information, to receive the data from the plant
simulator, and to send data back (shown in Figure 8) are discussed below.

8.4.3 Data structures

Let us first overview the data structures used for the data exchange. The information
about selected turtle parameters is received in the structureCTURTLE.

struct CTURTLE {
float position[3];
int positionC; /* number of values sent for position */
float heading[3];
int headingC; /* number of values sent for heading */
float left[3];

69

int leftC; /* number of values sent for left */
float up[3];
int upC; /* number of values sent for up */
float line_width;
int line_widthC; /* number of values sent for width */
float scale_factor;
int scale_factorC; /* number of values sent for scale */

};
typedef struct CTURTLE CTURTLE;

It contains selected turtle parameters together with a parameter specifying how many
values have been sent for a given parameter. Thus if a particular turtle parameter is
not received by the environment (i.e. it is not listed in the communication specification
file), the corresponding “count” parameter is set to 0. This allows the environmental
process to check whether a required turtle parameter is available (see the examples
below).

StructureCmoduletypeis used to store parameters of the communication module
and the module immediately following it:

#define CMAXPARAMS 20 /* max. number of module parameters */
#define CMAXSYMBOLLEN 4 /* max. length of a module name */
struct module_type {

char symbol[CMAXSYMBOLLEN+1];
int num_params;
struct param_type {

float value;
char set; /* if set=1, the value is sent back */

} params[CMAXPARAMS];
};
typedef struct module_type Cmodule_type;

The structure consists of the module name (possibly a multisymbol module, such as
@Gs, @Gc, @Tx, etc. — see Section 6.1.9), the number parameters, and an array of
parameter values. Since the same structure is also used to inform the plant model about
modified parameters of the communication module, the flagsetassociated with each
parameter value specifies whether the parameter has been modified by the environment
or not.

Both structuresCmoduletypeandCTURTLEare defined in the library header file
commlib.h.

8.4.4 Library functions

To facilitate the writing of an environmental process, the following functions are spec-
ified in the communication library (comm). The first two functions are used in both
modes of operation (Section 8.4.2):

70

voidCSInitialize(int *argc, char ***argv)
Initializes the communication and parses necessary options. This call should be
made as the very first operation in the functionmain(). The parameters of the
functionCSInitialize() are pointers to the standard parameters of the function
main(), specifying the number of command line options of the program and an
array storing these options. Since the communication library may add some addi-
tional, internally used options to the command line, the functionCSInitialize()

parses these options and updates the values of parametersargc andargv so that
the user can process the options listed after the commandexecutable in the com-
munication specification file (see Section 8.4.1).

voidCTerminate(void)
Ends the communication — this should be the last call in the functionmain().

If the parameters of a communication module can be modified immediately, the
following function can be used.

voidCSMainLoop(int (*Answer) (Cmoduletype *, CTURTLE *))
The parameter of the functionCSMainLoop() is a mapping functionAnswer().
The mapping function modifies the parameters of the communication module,
stored in a two-dimensional array (pointed to by the first function parameter),
which also includes the module following the communication module. The sec-
ond parameter of the function contains the received turtle parameters.

If the environmental program calls the functionCSMainLoop() with a mapping func-
tion as the parameter, the communication is fully controlled by the communication part
of the modeling system. The functionCSMainLoop() returns when the plant simulator
sends a message to terminate the environmental program. The environmental program
can then clear its local data structures and callCTerminate() (see the first example in
Section 8.4.5).

If the incoming query cannot be answered immediately, the following functions
have to be called in a specific order (see Figure 8 and the code listing below):

int CSBeginTransmission(void)
Starts transmission (of all communication modules in the string generated by
the plant simulator). The process waits for the plant simulator to perform a
simulation step and to send the first communication module. The function always
returns a value of 1.

int CSGetData(int *master, unsigned long *moduleid,
Cmoduletype *twomodules, CTURTLE *turtle)

Obtains a communication module and possibly the following module from the
plant simulator (if the second module is not present, its name is an empty string,
i.e. two modules[1]:symbol[0] is equal to 0). The parametermoduleid spec-
ifies a unique identification number of the communication module, the pointer

71

two modulespoints to a two-dimensional array containing the communication
module and the next module, and the pointerturtle points to the turtle structure
(note that only some turtle parameters are sent, according to the specification
file). The parametermasteris set to the index of the calling master. This value
is used only in a multiprocess environment (Section 8.5) and in the case of a
two-process communication, it is always equal to 0.

The function returns 0 when there is no other module (at the end of the en-
vironmental pass). In this case,moduleid is set to the number of the current
simulation step.

int CSGetString(int *master, char *str, int length)
Reads a stringstr, with maximum lengthlength, sent by the plant simulator. Ac-
cording to the communication specification file, selected modules can be inter-
preted during an environmental step and the polygons representing the modules
(or their homomorphic image) are sent as a set of strings following the communi-
cation module. Thus the functionCSGetString() is used in a loop after each call
to CSGetData() to retrieve these strings. It is recommended to always include
a loop of calls toCSGetString() to receive possible strings from the incoming
data (see examples below), because if the plant simulator sends some strings,
which are not read by the environmental process, the communication would be
interrupted.

The function returns 0 when there is no string coming.

voidCSSendData(int master, unsigned long moduleid,
Cmoduletype *commmodule)

Sends the modified communication module back to the plant simulator. The
originalmoduleid must be specified. In the case of two-process communication,
the value ofmastershould be 0.

int CSEndTransmission(void)
Ends a transmission (after all modified communication modules are sent back
to the plant simulator). The function returns 1 when the process is requested to
terminate. In this case, the communication loop should be exited, the process
should free its data structures, and callCTerminate().

Instead of calling the library functionCSMainLoop(), the user has to define a func-
tion MainLoop(), which should have the following general form.

void MainLoop(void)
{

Cmodule_type two_modules[2];
int master, current_step;
unsigned long module_id;
CTURTLE turtle;
char str[2048];

72

for(;;) {
CSBeginTransmission();
while(CSGetData(&master, &module_id, two_modules, &turtle)) {

StoreQuery(master, module_id, two_modules, &turtle)
/* store all or some of the queries - do not forget

to store values of ’master’ and ’module_id’! */

while(CSGetString(&master, str, sizeof(str))) {
ProcessGraphics(master, str);
/* process the graphical representation of the

module following the communication module */
}
DetermineResponse(); /* determine the answers*/

SendBackResponse();
/* send back modified communication modules using

CSSendData(master, module_id, &two_modules[0]); */

if(CSEndTransmission()) break;
}

}

FunctionsStoreQuery(), ProcessGraphics(), DetermineResponse(), andSendBackResponse()
have to be defined by the user depending on the data structures chosen for storing and
processing the incoming communication modules. In the case of a two-process com-
munication, the parametermastermay be ignored (and for functionCSSendData() set
to 0). To be able to use the program in a multiprocess environment (see Section 8.5),
the parametermastershould be stored as well.

The second example in the following section illustrates the use of the functions
listed above.

8.4.5 Examples

Two simple examples of an environmental process are presented below. The first ex-
ample illustrates the case when the parameters of the received communication module
can be set immediately, thus the program uses the functionCSMainLoop().

#include <stdio.h>
#include "comm_lib.h"

int Answer(Cmodule_type *two_modules, CTURTLE *turtle)
{

static float zero[3]={0,0,0};

73

if(turtle->positionC < 3) {
fprintf(stderr,"Turtle position not set!\n");
return 0;

}
if(two_modules[0].num_params >= 1) {

two_modules[0].params[0].set = 1; /* parameter modified */
two_modules[0].params[0].value = Distance(turtle.position,zero)

> two_modules[0].params[0].value ? 1 : 0;
}
return 1;

}

void main(int argc, char **argv)
{

CSInitialize(&argc, &argv);
CSMainLoop(Answer);
CTerminate();

}

The functionAnswer determines the distance of the turtle position from the point
(0; 0; 0) and if it is greater than the first parameter of the communication module, the
parameter is set to 1. Otherwise it is set to 0.

The following example illustrates the second mode of operation, when the incom-
ing communication modules (queries) have to be stored before their parameters can be
modified. The environmental program detects whether a communication module col-
lides with another one. The program has been used in the model of Sierpinski’s gasket
from Section 8.1.

The communication is defined by the following communication specification file.

executable: point_collision
communication type: pipes
turtle position:%.5g %.5g

The environmental program is given below.

/**** Environmental process - testing point overlapping ****/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "comm_lib.h"

#define EPSILON 0.001 /* precision of comparisons */
#define MAXQUERIES 1000 /* maximum number of queries */
struct item_type {

74

float position[2];
float query;
unsigned long id;
int master;

} queries[MAXQUERIES]; /* queries */

int num_queries; /* actual number of stored queries */

/**/
void StoreQuery(int master, unsigned long module_id,

Cmodule_type *comm_symbol, CTURTLE *tu)
{

if(tu->positionC < 2) {
/* do not write to stdout, because it is used for pipes */
fprintf(stderr,"environment: turtle position missing.\n");
return;

}
if(num_queries >= MAXQUERIES) {

fprintf(stderr, "environment: too many queries!\n");
return;

}
queries[num_queries].position[0] = tu->position[0];
queries[num_queries].position[1] = tu->position[1];
queries[num_queries].query = comm_symbol->num_params >= 1;

/* answer only if ?E has one or more parameters */
queries[num_queries].master = master;
queries[num_queries].id = module_id;
num_queries++;

}

/**/
void DetermineResponse(void)
{

int i, j;
Cmodule_type comm_symbol;

comm_symbol.num_params = 1;
comm_symbol.params[0].set = 1;
comm_symbol.params[0].value = 0; /* report only collisions */

for(i=0; i< num_queries; i++) /* for all queries */
if(queries[i].query) { /* don’t answer if no parameter */

for(j=0; j< num_queries; j++)
if(i!=j)

75

if(fabs(queries[i].position[0]-queries[j].position[0])
< EPSILON &&

fabs(queries[i].position[1]-queries[j].position[1])
< EPSILON) {

CSSendData(queries[i].master,queries[i].id,
&comm_symbol);

break;
}

}
}

/**/
void MainLoop(void)
{ /* controls the loop of data exchange */

Cmodule_type two_modules[2];
unsigned long module_id;
int master;
CTURTLE turtle;

/* infinite loop - until message ’exit’ comes */
for(;;) {

CSBeginTransmission();
num_queries = 0;

while(CSGetData(&master,&module_id,two_modules,&turtle))
StoreQuery(master, module_id, two_modules, &turtle);

DetermineResponse();

/* EndTransmission returns 1 when the process is
requested to exit */

if(CSEndTransmission()) break;
}

}
/**/
int main(int argc, char **argv)
{

/* initialize the communication as the very first thing */
CSInitialize(&argc, &argv);
MainLoop();
CTerminate(); /* should be the last function called */
return 1;

}

76

Each incoming query is stored in a one-dimensional array of a fixed size. To determine
the response for queries with more than one parameter, the coordinates of the query
point are compared with the coordinates of all other points. If there is another point
with the same coordinates, the environmental process sends the value 0 to the plant
model. Otherwise, the parameter of the communication module stays unchanged and
there is no reply by the environment.

8.4.6 Troubleshooting

During the design of a model, it may be necessary to find out whether proper data are
transferred between the environment and the plant simulator. To view the exchanged
data, it is possible to use the file communication and to display the content of files
.to fieldXXXX.0and.to fieldXXXX.0.

If the amount of transferred data is too large though, the data are transferred from
one process to the other in several chunks (each stored in a file with the same name).
Thus the user can access only the last chunk of data. The maximum size (in the number
of modules) of the data file is predefined, but it is possible to increase it to a value large
enough so that there is only one communication file used during the data exchange (by
adding a number behind the keywordfile in the specification file).

Often it is also necessary to debug the environmental program. The debugging is
much easier if the program is running in a stand-alone mode, without the plant simu-
lator. To achieve this, it is possible to use the pipe communication and to run only the
environmental program, while inputing the data to the standard input and receiving the
response on the standard output. The input data can also be redirected from a file. This
file can be either created in a text editor or obtained from files exchanged between the
processes during a regular simulation (which uses the file communication).

Running the environmental process in the stand-alone mode then follows these
steps:

1. The simulation is first run with the plant simulator, using the file communication.
Each time the simulation is stopped, it is possible to concatenate the data file
.to fieldXXXX.0(the data sent to the environment in the last data exchange) to a
file to field, which is of zero length at the beginning of the simulation. It is also
possible to choose the data file from only one simulation step.

2. The user may change the content of the file (e.g. edit some values) or add a
message terminating the environmental process, by including a line containing
the string “Control: 8” to the end of the fileto field.

3. The environmental process can then be run separately, by setting the communi-
cation type topipesand redirecting the fileto field to the standard input:

environment -e commspecfile< to field

The program writes all modified communication modules to the standard output
in a text format.

77

8.5 Distributed system

In a distributed system, several plant models can communicate with different environ-
mental processes and then send the graphical interpretation of the models into a single
drawing window.

Each program in the system has to be compiled with the provided communicationhofs/cpfg3.4.exam-
ples/Distr.environlibrary. Since the programs can be running on different machines, they exchange data

using Unix sockets. The connection to other processes is specified in the command line
of a process, following the switch–C:

-C -c,confirm_socket,start_machine;-m:spec_file1,socket1...
...;-s:spec_fileK,socketK,master_machineK

The single string of switches specifies:

-c the number of a socket and a machine name to which the confirmation about a
successful execution should be sent. After the confirmation, the process monitors
the socket for a possible request to terminate.

-m a master connection. The process operates as a master: it sends data specified
in the communication specification filespecfile1 to the defined socket (socket1)
and expects the reply on a socket with numbersocket1+1. There can be several
master connections.

-s a slave connection. The process acts as a slave: it expects data (defined in the
communication specification filespecfileK) from a given socket on a specified
machine, processes the incoming data and responds back through a socket with
numbersocketK+1. If there are more slave connections the data from the sockets
are processed in the order given in the command line.

The delimiters in the command string can be characters ’,’ or ’;’.
The communication specification file contains the same commands as in the case

of two-process communication with following modifications:

� commandexecutableis ignored.

� the type of communication (communication type) is also ignored; it is always set
to sockets.

� two new commands have been added:

strings only: on/offthe data exchanged between the processes contain only text
strings. No L-system modules are transferred. This switch is used, for ex-
ample, for transferring a list of primitives from plant models to the drawing
program.

binary data: on/offbinary data can be exchanged between processes. The re-
ceiving process must be aware of the coming binary data, thus often the
data are preceded by a special command string.

The following section lists the functions provided by the communication library.

78

8.5.1 Communication library functions

This sections lists all functions of the communication library, which can be used by
processes communicating with each other in a distributed system.

First, there are three functions used by all processes regardless their role in the
communication (i.e. slave, master, or both):

voidCInitialize (char *programname, char *commandstring)
Initializes the communication. The first parameter specifies the name of the pro-
cess, which is used to distinguish messages from different processes displayed
on the same terminal. The second parameter contains the string following the
switch -C containing the specification of all connections. The format of the
string is described above.

voidCSInitialize(int *argc, char ***argv)
An optional function to the previous one. This function retrieves all the necessary
information from the process’ command line. In this case, the switch-C has to
be the first one on the command line.

voidCTerminate(void)
Ends the communication — this should be the last function called.

int CShouldTerminate(void)
This function returns 1 if the process is requested to terminate — when a special
character is sent to the process’ confirmation socket by a control process (see
Section 8.5.2).

A process can operate as a slave, master or both. The latter means that the process
waits for an input from its masters and then can require some data from its slaves.
Communicating with its masters, the process can use functions as in the case of a two-
process communication:

voidCSMainLoop(int (*AnswerQuery) (Cmoduletype *, CTURTLE *))

int CSBeginTransmission(void)

int CSEndTransmission(void)

int CSGetString(int *master, char *str, int length)

int CSGetData(int *master, unsigned long *moduleid,
Cmoduletype *two modules, CTURTLE *turtle)

This function is generally used only by environmental processes directly com-
municating with the plant simulator (cpfg).

voidCSSendData(int master, unsigned long moduleid,
Cmoduletype *commmodule)

This function is generally used only by environmental processes directly com-
municating with the lant simulator (cpfg).

79

In addition there are few new functions:

int CSGetNumberOfMasters(void)
Returns the number of connections to a master specified on the command line.

int CSSendString(int master, char *item)
Sends a string to the specified master (with indexmaster).

int CSSendBinaryData(int master, char *item, int itemsize, int nitems)
Sends a binary data to the specified master. This function is used, for example,
for sending images with a depth information to a drawing program (see Sec-
tion 8.5.3). The function returns 0 if the data have not been sent.

To communicate with its slaves, a process can call functions:

int CMBeginTransmission(void)
Initializes connections to all slave processes for a single data exchange. Cur-
rently, the function always returns 1.

int CMEndTransmission(int current step)
Terminates the data sent by the master in a single data exchange. The parameter
current stepis used bycpfg to send the number of the current simulation step
to the environment. This number is returned as themoduleid parameter of the
functionCSGetData(see above). Currently, the function always returns 1.

int CMTerminate (void)
Terminates all slave processes. The function returns 1, if all processes are suc-
cessfully terminated.

int CMGetNumberOfSlaves(void)
Returns the number of slaves communicating with the process.

int CMSendString(int slave, char *item)
Sends a string to the specified slave.

int CMGetString (int slave, char *str, int length)
Receives a string from the specified slave. Returns 0 if there is no string coming.

int CMSendBinaryData(int slave, char *item, int itemsize, int nitems)
Transfers a binary data to a given slave.

int CMGetBinaryData (int slave, char *data, int itemsize, int nitems)
Receives a binary data from a given slave. Returns 0 if there is no data coming.

int CMSendCommSymbol(int slave, unsigned long moduleid,
Cmoduletype *twomodules, CTURTLE *turtle)

Sends two modules (a communication module with the following module) with

80

their identification number to a given slave. The function returns 1 if the second
module should be graphically interpreted and the resulting set of triangles trans-
ferred to the slave. This function is used mainly by the plant simulatorcpfg .

int CMGetCommunicationModule(int slave, unsigned long *moduleid,
Cmoduletype *commmodule)

Receives a communication module with its identification number from a speci-
fied slave. The function returns 0, if there are no more modules coming from the
slave.

Unless specified, the functions return a value of 1, if they finish successfully. Note that
unlike for a slave, in the case of a master the incoming data are fetched from a specified
slave. This allows the program to process the response from the same slave as the one
to which the data from the master has been transferred.

Example. Following example illustrates a programhubthat acts as a common interface
between several plant simulators (masters of thehub) and models of the environment
(slaves of thehub). The program establishes all connections to its masters and slaves.
Then for each communication module, it receives from a given master, it sends the
module to a slave with an index specified as the first parameter of the communication
module. The index of the master is stored as the first parameter of the symbol sent to
the slave.

After each module is transferred to a specific slave, the response from a slave is
checked and if there is one, the communication modules sent by the slave are trans-
ferred to the proper master. Just in case the slave processes are not responding imme-
diately, the input from all of them is again checked at the end of a single transmission.

The full listing of the program follows.

#include "comm_lib.h"

void MainLoop(void)
{

Cmodule_type two_modules[2], comm_module;
unsigned long module_id;
CTURTLE turtle;
char string[2048];
int slave, master;

/* infinite loop - until signal ’exit’ comes */
for(;;) {

CSBeginTransmission();

/* begin transmission to all slaves */
for(i=0;i<CMGetNumberOfSlaves();i++)

CMBeginTransmission(i);

81

/* process the data */
while(CSGetData(&master, &module_id, two_modules, &turtle)) {

if(two_modules[0].num_params>0 &&
two_modules[0].params[0].value > 0 &&
two_modules[0].params[0].value <= CMGetNumberOfSlaves()) {

slave = two_modules[0].params[0].value-1;

/* store the index of the master */
two_modules[0].params[0].value = master;

if(CMSendCommSymbol(slave,
module_id, two_modules, &turtle)) {

/* send graphics */
while(CSGetString(&master, string, sizeof(string)))

CMSendString(slave, string);
}

/* check for possible response */
while(CMGetCommunicationModule(slave, &module_id,

&comm_module)) {
/* retrieve the master */
master = comm_module.params[0].value;
/* do not change the first parameter */
comm_module.params[0].set = 0;

CSSendData(master, module_id, comm_module);
}

}

CMEndTransmission(module_id);

/* process the rest */
for(slave = 0; slave < CMGetNumberOfSlaves(); slave++)

while(CMGetCommunicationModule(slave,&module_id,&comm_module)){
/* retrieve the master */
master = comm_module.params[0].value;
/* do not change the first parameter */
comm_module.params[0].set = 0;

CSSendData(master, module_id, comm_module);
}

82

if(CSEndTransmission()) break;
}

}

/**/
void main(int argc, char **argv)
{

/* establishes all connections according to -C parameter */
CSInitialize(&argc, &argv);

MainLoop();

CTerminate();
}

The two sections below describes the function of an initialization programstartand
a simple drawing programdraw.

8.5.2 Initialization program

Programstart reads in a text specification file and executes a set of communicatinghofs/cpfg3.4.exam-
ples/Distr.environ/-
with start

processes. The program takes as a parameter the name of the specification file and an
optional switch-v to run the program in a verbose mode with detailed report displayed
in the terminal window.

The specification file contains the definition of processes and connections between
couples of processes. The specification of a process starts with commandprocesses:
followed by a group of lines, not separated by an empty line, with commands:

name:processname Defines a unique process name.

host: machinename Defines the name of the machine on which the process is exe-
cuted. If the command is omitted, the local machine is used.

files: list of filenamesSpecifies files which have to be copied to the remote machine.
This command can be repeated several times to specify more files.

command:binary with parametersDefines the executable of the process. The full
path does not have to be specified if the process path is set in the system variable
PATH .

display: machineSpecifies the machine to which the display is redirected. If not spec-
ified, the system variableDISPLAY is set to the local machine. Since plant
simulatorcpfg needs the connection to an X-server, it is necessary to spec-
ify a valid display variable, especially if the program is executed on a remote
machine. The X-server connection is required in order to use calls to graphics

83

library OpenGL. If the plant simulator is connected to the X-server on a different
machine, a lot of data have to be transferred between these machines to create
the image of the plant. Thus if it is not possible to connect to the display on the
same machine as the one of the plant simulator, either the plant simulator should
generate only a list of primitives or L-system strings or it should be compiled
using a public domain graphics library equivalent to OpenGL10, which does not
need the connection to an X-server.

Note that commandsetenvused for modifying the variableDISPLAYmay not
work in every operating system. In that case it is possible to add a corresponding
variant of the commandsetenvto the command line of the process.

Each command can be replaced by one or more letters, because only the first character
of a command is considered. A line starting with symbol ’#’ is ignored. An empty line
separates definitions of different processes.

Every process specified in the list has to be compiled with the same version of the
communication library and has to start with call to functionCIntialize()or CSInitial-
ize()and finish with a call toCTerminate()(see the previous section).

All communicating processes have to be specified before defining connections. The
specification of connections follows the commandconnections:. Each line defines a set
of connections. For example, the line:

master1,...,masterN -> slave1,...,slaveM: spec_file common_parameters

initiatesM:N connections between each of theN masters and allM slaves using
the same type of communication (specified in the communication specification file).
In addition, common command-line parameters added to process executables (com-
monparameters) can be defined. Processes are referred to by their name.

In the following example, a drawing processdraw server(nameddraw) commu-
nicates with two modeling programscpfg (namedtree1and tree2). Both modeling
programs are masters to an environmental processchiba (namedlight) simulating the
local light environment shared by the two trees. The specification file is listed below.

processes:
name: draw
files: specs.e
command: draw_server -r shaded

name: tree1
host: ik
files: specs.e tree.e tree.mat tree1.l tree.v tree.a leaf.s
command: cpfg -a -M tree.mat tree1.l tree.v tree.a
display: shere

10Library MESA by Brian Paul available at http://www.ssec.wisc.edu/�brianp/Mesa.html.

84

name: tree2
host: shere
files: specs.e tree.e tree.mat tree2.l tree.v tree.a leaf.s
command: cpfg -a -M tree.mat tree2.l tree.v tree.a

name: light
host: ip
files: tree.e light.spec
command: chiba2 light.spec

connections:
draw -> tree1,tree2: specs.e -g -w 640 480
tree1,tree2 -> light: tree.e

The programstart operates as follows. First, it processes the specification file.
For each process run on a remote machine, a unique directory/tmp/cpfgtmp XXXXXX
is created on the specified host and all required files are copied into it (using system
commandrcp).

After all connection are read, all processes are started one by one using system
commandrsh:

rsh host ”cd /tmp/cpfgtmp XXXXXX; setenv DISPLAY host:0.0;
path/binary connectionparams commonparams specifiedparams &” &

The process pathpath is either specified or obtained using system commandwhich.
The connection is specified by connection parametersconnectionparamsdescribed at
the beginning of this section:

-C -c,confirm_socket,host_of_start;-m:spec_file1,socket1,...
...;-s:spec_fileK,socketK,master_hostK

Each process obtains a socketconfirmsocketto which it should confirm execution and
send a character ’T’ upon termination. Each master connection is defined by a socket
and a specification file. Each slave connection in addition needs the machine name of
the master that sets up the socket. Parameterscommonparamsare parameters shared
by both processes communicating with each other (specified with each connection, in
the example above-g -w 640 480) and specifiedparamsare these defined with the
process.

The programstart waits up to 20 seconds for the confirmation of a successful ex-
ecution of a process. If it is confirmed, the next process is spawned. Otherwise all
previously started processes are terminated by sending character ’K’ on their confirm
socket. This sockets is automatically monitored during calls to functions of the commu-
nication library. Any ongoing communication is terminated and the process is forced
to terminate.

85

After all processes are successfully started the program waits for a signal from
processes about their termination. After all signals are received, the program removes
all files and directories created in/tmpon all used hosts.

8.5.3 Drawing program

In the example from the previous section, two processes simulating two trees are com-hofs/cpfg3.4.exam-
ples/Distr.environ/-
with start

municating with a drawing programdraw serverthat displays both trees in a single
window.

The programdraw server communicates with plant simulators by sending text
commands, such asnew viewor step, and receiving the graphical information about
the simulated structure. Currently, the program recognizes two forms of graphical
data. First, it is an array of values representing the color and depth for each pixel. The
depth value is necessary in case images from several programs are combined into one
window. The second format consists of a list of primitives (a sequence of OpenGL-like
commands — see Section 7.4) describing the geometry of the modeled structure.

The programdraw server is linked with the communication librarycomm, thus
connections between the program and plant models are defined using command line
switch-C. This switch is set automatically if the distributing programstart is used (see
the previous section). Other command line parameters include:

–r mode Sets the rendering mode. Currently,shaded, flat, andwireframemode is
supported. The default isshaded.

–c num Defines the number of polygons around a cylinder.

–w xsize ysizeSpecifies the size of the window. Since the program is drawing the
models into an pixmap, which is then copied into the window when necessary
and it does not store the information coming from plant models, it is not possible
to resize the window.

Switches-r and-c are considered only if the interpretation of OpenGL-like commands
is performed.

Although the programdraw serveris designed to communicate with the plant sim-
ulatorcpfg , it is possible to use a simple processdraw client that sends all the data
from its standard input to the drawing process specified by a socket.

Let us consider an example, in which first the drawing programs is executed with
following switches:

draw_server -C -m:specs.e,1244 -w 640 480

setting the window size and a socket for the communication. The communication is
specified by filespecs.e:

strings only: on

86

which allows strings being sent between the processes (not communication modules
?E).

After its execution, the drawing process is waiting for the first transfer of data
through the specified socket. If thedraw serveris running on machineshere, for ex-
ample, the data can be sent by calling:

draw_client -C -m:specs.e,1244,shere

and typing in following commands:

clear 1 1 1 /* background color */
material

0.5 0.5 0 1 /* ambient color (r,g,b,alpha) */
1 1 0 1 /* diffuse color */
0 0 0 1 /* specular color */
0 0 0 1 /* emissive color */
0 /* transparency */

polygon
0 0 0
0 1 0
1 0 0

When the last line is typed in and the input is terminated by pressing keysControland
D, the data are transferred to the drawing process that draws a yellow triangle on a
white background.

Thus it is possible to add the drawing client into the distributed system and interac-
tively add primitives to the visualized scene.

87

9 Miscellaneous features

9.1 Rayshade instantiation

Homomorphism productions generally produce the same geometry for a given mod-hofs/cpfg3.4.exam-
ples/homomorphism/-
rayshade.instancing

ule with a given set of parameters. It is then convenient to take advantage of this
information during the output into a rayshade file format, since this format supports
instantiation.

It is possible to mark selected homomorphism productions (using a delimiter-o>
instead of the standard-->). During the rayshade output an object with a name given
by the predecessor of the productions and the values of its parameters is created. Each
time such a module is encountered during the interpretation of the string (while creating
the rayshade file), only a reference to the given object is included in the file, not the
geometry representing the module.

The output consists of three stages:

Stage 1.The string is parsed left to right with the full update of the turtle parameters,
but no output file is created yet. Each time a homomorphism production with the
delimiter -o> is applied to a module, this module with its parameters is searched in
a hash table. If the hash table does not contain the same module with the same set of
parameters, the module is added to the table (together with selected turtle parameters
— the line width, the scale factor, the color index, the color index for the back side of
a surface, and the texture index). Otherwise the encountered module is an instance of
the already stored module and it is not necessary to add it to the hash table.

It is possible to control the precision with which the parameters of the encountered
module are compared with parameters of stored modules. To this end, a view file
commandrayshade objects: format defines the printf style format string (e.g.
%:3f), used for specifying the precision of the compared parameters. The default value
is %g (the full precision is used), but the number of instances of a single module can
be increased, and consequently the size of the rayshade file reduced, if the precision
is decreased to a few decimal points. In this case a module can be represented by
a module with slightly different parameters, but the resulting structure may be still
acceptably close to the original.

In some instances, the same modules with the same parameters can result in dif-
ferent structures, because some turtle parameters, such as the current line width or
color index are different when the second instance of the module is interpreted. It
is possible to include also turtle parameters (namely the line width, the scale factor,
the color index, the color index for the back side of a surface, and the texture index)
to the comparison between two modules with the same parameters. To do so, words
turtle consideredhave to be added after the format string to the view file command
rayshade object .

At the end of this stage, the hash table contains all the modules whose geometry
has to be specified at the beginning of the rayshade file (since rayshade format does not
allow backward referencing). Each module is also linked to the module that previously

88

occurred during the interpretation, to be able to process the modules in the opposite
order than the order in which they appeared (used in the following stage).

Stage 2.The modules stored in the hash table are interpreted, in the order given by the
linked list (from right to left in the string). For each moduleM or M(a1; a2; :::; an),
a rayshade object with the nameM or M a1 a2 ::: an is created and all the geome-
try resulting from the interpretation of the module is stored within this object. If the
module is not a letter, the name starts with symbolc followed by the ascii code of the
character (for example, module ’;’ would be represented asc073). In the case that
also the turtle parameters are used for the differentiating between the same instances,
a symboli followed by a unique index of the module is added to the object name. The
index differentiate between the same modules with the same parameters.

At the beginning of interpretation of each module, the turtle position and orienta-
tion is set to the default values (positioned at 0, and pointing upwards). Other turtle
parameters, such as the current color or material index or the current line width are
set to the values stored with the module in the hash table. Thus if the turtle is ignored
during the stage 1, all instances will use the same turtle parameters as the ones at the
first occurrence of the module (during the stage 1). If the turtle is considered for the
module comparisons, each instance will have correct turtle parameters.

If during the interpretation of a module another module that can be found in the
hash table is encountered, the encountered module is not interpreted. Instead, a refer-
ence to its object name is included in the rayshade file, followed by a transformation
matrix capturing the current turtle position and orientation. Processing of the mod-
ules in the opposite order than the order in which they appear during the interpretation
guarantees that the object is already defined in the file.

Stage 3. After all instantiated modules are output to the file, the L-system string is
interpreted again. If a module is not found in the hash table, its geometry is output to
the rayshade file. In the case, that the turtle is considered for the comparisons, even if
the turtle parameters of the interpreted and stored module differ the module’s geometry
is output to the file. If the module is found in the hash table, only the reference to the
predefined object is included in the rayshade file. To properly position and orient the
object, the reference to the object is followed by a transformation matrix capturing the
current turtle position and orientation.

9.2 Sending commands to cpfg through sockets

It is possible to control the interactive operation of the plant simulatorcpfgby sending hoofs/cpfg3.4.exam-
ples/socket.commandsthe commands through sockets. Each menu item has a corresponding command. This

functionality allows the user, for example, to modify the L-system file, view file, or any
other input file by an external program and then send a command corresponding to the
cpfg menu itemsNew L-systemor New View. Thus the displayed model can be updated
without interactive participation of the user.

Note that this functionality is available only in the interactive mode of operation.

89

To be able to send the commands tocpfg, it is necessary to execute it with a com-
mand line switch-S followed by an arbitrary number specifying the socket:

cpfg -M plant:mat -S 3000 plant:l plant:v:

Afterwards, the user can send an arbitrary command representing a menu item to
the plant simulator by using a programcommandclient. The program has two pa-
rameters, the first one specifies the network name of the machinecpfg is running on
(thus the command can be send also from a remote machine) and the number of the
corresponding socket. The first parameter can be omitted in which case the program
commandclient is trying to access a socket on the local machine.

The commands sent tocpfgcontain the text of the desired menu items (in case of
submenus, also the text of the upper menu is included, separated by ’—’). The program
commandclient reads the commands from the standard input (one command per line),
but it is often more convenient to pipe the commands to the program. For example:

echo "New view" j command client machine 3000:

or
echo "OutputjImagejRGBjSave as :::" j command client 3000:

The command can be all in lower case, because the matching is not case sensitive.
If the menu item with a predefined filename is to be selected, the file has to be

replaced by a dot (’.’). Thus

echo "InputjStringjbinaryjInputfrom:" j command client 3000

inputs a binary string tocpfg from the default file name, unless another file name is
specified on the command line:

cpfg -M plant:mat -strb my string:strb -S 3000 plant:l plant:v:

10 Limitations

This section addresses some limitations of the current version of the plant simulator
cpfg.

10.1 Using the hardware colormap

When using a hardware colormap, the programcpfgchecks whether a colormap of size
4096 already exists. Usually it does, as indicated by an X-root variableSGI DEFAULT COLORMAP
andcpfguses this colormap (the id if the colormap is again accessible from the X-root).
Sometimes, though, the colormap does not exists or is not big enough and an external
programinstall mapis called.

This program creates and installs a colormap of the size 4096 (if possible), creates a
new X-root variable calledOPENGLINDEX COLORMAP, and stores the colormap

90

index there. Unfortunately, to properly install the colormap the program has to be
terminated. Thus this cannot be done bycpfg.

The programinstall mapis located together with other utilities in the same direc-
tory ascpfg. This directory should be included in yourPATHvariable, otherwise the
program will not be executed and the colormap allocation fails.

10.2 Using cpfg on less than 24-bit screens

If your hardware does not support true color visuals (i.e. it has less than 24-bits per
pixel), the index mode may not work properly. To determine the number of bits per
pixel of the screen buffer, run commandginv (on SGIs only) and sum the number of
bitplanes for a single buffered alpha, red, green, and blue channels.

For example, on 8-bit screen you will be able to use only a colormap of size 256
(not 16 � 256 as is usual on on 24-bit screen) and in the index mode,cpfg will au-
tomatically switch to this 256 entries even if the default colormap uses the second 256
entries in the hardware colormap of a bigger size. Unfortunately, the current versions of
utility programsloadmap andsavemap do not recognize the type of the screen and
try to load or save the second 256 entries. Thus it maybe necessary to use command
line parameter -c0 both withloadmap andsavemap .

You can also use command line switch-m with a colormap file or switch-M with a
material file but in this case, the low number of bits per pixel will significantly reduce
the quality of the output (the image will be dithered). At least use a single buffer mode
(command line switch-sb) to increase the number of bit planes allocated for each
pixel (in double-buffered mode, the number is divided by two —e.g. 4 bits per front
and 4 bits per back buffer as compared with 8 bits in a ingle-buffer mode).

10.3 Use of symbol # in the L-system file

Make sure that the symbol # does not appear as the first symbol on the line in an L-
system file or the first symbol after tabs or spaces. Otherwise, the preprocessor tries to
recognize it as its command and the reading of the file fails. If you would like to use a
production with # as the predecessor add an empty left context, such as in:

� < #(wid) ! #(wid � 0:9):

Also make sure that in the case of multiple-line successors the new line does not starts
with # and move the module to the previous line.

10.4 Transparent objects

The support of transparent objects is not very strong in OpenGL. To render transparent
objects correctly, it is necessary to perform two passes through the objects, first draw
the opaque objects, then to sort all transparent or semitransparent objects according to
their position with respect to the viewer, and draw them in that order (with the depth

91

buffer switched off). This is a very time consuming process. Consequently, all objects
resulting from the interpretation of the L-system string are drawn opaque (even if the
material has transparency set to a value above 0).

Nevertheless, it is possible to define transparent object in the background scenehofs/cpfg3.0.features/-
interpretation/-
gencylinders/-
backgroundscene

(used, for example, to visualize the concentration contour in the three-dimensional
model of roots). The only limitation is that the objects are not sorted for the second
drawing pass and the resulting image may be incorrect.

Note that the transparent objects are output to rayshade or inventor even if they are
not transparent on the screen.

92

11 Things to do

11.1 Problems

� On April 21 1998, Jim discovered a problem when using new homomorphisms
and the instance stuff; it causes a crash. He wanted to look at it. I am not sure
what is the current status.

� When using stochastic productions,cpfg requires stochastic values for ALL
productions, whether they are stochastic or deterministic. This should not be
necessary. Also, the seed is not set! This should be looked at soon.

� you cannot have a variable with the same name as an array. It used to be possible,
but now it does not work. An error message is printed if such a variable or array
is defined, but it should be fixed so that the programs allows both.

� There’s an error message that is given in the new subLsystem code when a re-
cursive call is attempted to a sub-Lsystem:

ERROR: Recursive call to Sub-L-system #

Right now it exits the program, but it should do like other errors do, and leave
the process running for future rereads.

� One thing Jim have noticed is that when running the binary on an O2 there are
strange things happening with the buffers. There seems to be a one pixel margin
around the edge of the window that gets cleared ok, but when the image is finally
drawn apparently random colours appear in that margin, giving a pulsing effect.
Very disconcerting. He does not have the O2 any more, but he should be getting
his Octane early in 1998 and he will check it again, and try compiling to see if it
fixes the problem.

� The memory allocated bycpfg ’s (the resident size) increases with each New
View. This increase may be significant in animations in which the new view
is invoked after each animation step. This problem has not been traced yet, it
may be something related to OpenGL or X. It is not anything directly caused
by cpfg calling malloc, strdump, or realloc, because these calls can be moni-
tored if cpfg is compiled after runningmake heapcheck . Maybe related to
textures? Maybecpfg does not call some cleaning functions of X or OpenGL.

� The Jim’s changes related to variables local to each sub L-system do not take
account of cut strings appended at the end of the L-system string.

� Sometimes, the buffers are not switched properly, if you resize the window.

� The size of the rgb image output bycpfg is wrong, but ras output is fine (on
IRIX 6.2).

93

� The normals seem to be wrong when@Gris set to -90.

� The bounding box is wrong for all off-screen generated rayshade outputs (used
when defined the optional object consisting of only the bounding box — see
Section7.1), unless the user includes also the view volume (using-vv /dev/null).
Since determining the view volume takes some time and the bounding object is
often not used, it would not be a good idea to compute the bounding box as a
default, but maybe some switch would be nice.

� when mapping textures on generalized cylinders, the aspect ratio of the texture
image is preserved. To do this, the length of the contour has to be computed.
Right now it is done approximately by computing the distances between10 � n
points lying on the contour (n is the number of control points specifying the
contour). It would be better to compute the real length of the contour.

� During instancing of homomorphismproductions in rayshade output (Section 7.1),
it may happen that an empty object is defined and rayshade would core dump on
the file. Currently, a tiny transparent sphere is defined in such cases. This could
be better solved by noting which instances are empty and not using them in other
places.

� If a contour includes some singularity (e.g.a sharp edge created by having three
control points at the same location), the normals are not correct.

� Cpfg should start with a reasonable colormap in the index mode to avoid a black
window if the user forgets to runloadmap .

� Spheres are not textured. What mapping to use?

� Cpfg generated Inventor files have sometimes too big memory requirements
(possibly related to too many items in a group).

� Directional lights do not convert properly to Inventor output (they are defined as
a very distant point source).

� If a predefined surface is not included in the view file, the created input file can-
not be viewed (the viewer does not read such a file). Either remove the references
to such surfaces or at least print a warning message.

� Currently,cpfg sends only recognized blackbox modules to the environment
(e.g.@C is not passed to the environment but@O is). This is a bigger problem
related to multiple-symbol modules. I would suggest to send only a single mod-
ule after?E, because a homomorphism production can be used to replace this
module with a multiple-symbol module.

� Cpfg displays the final image without showing the drawing process — a depar-
ture fromcpfg2.7 ; visible, in particular in lilacs.

94

� Maybe input string should not reread the view. A good question — what should
and what should not be reread?

� The materials with textures sure gives a lot more scope for making images... but
its slow on old machines. It’d be nice to have textures off during rotations or
something...

� It would be nice to enhance rotation speed by allowing for a different mode while
the object is being rotated.

� Sub L-systems should have names, instead of the cryptic numbers.

11.2 Fixes to the manual

� Section 7.4 need to say under what conditions which of the statements appear,
assumedly by reference to the view file parameters. Although currently,cpfg
outputs the viewing parameters in a single projection matrix.

� Format strings are used in a few places. It would be nice to have a section
explaining the general setup, along with usage examples.

� It would be nice to include an example of rayshade instancing (-o> productions)
where turtle’s parameters are considered.

� Regarding the manual describing environmental programs, it may be nice to in-
clude an example of the environment argument file in the description (this is
optional, because an example is a part of the vlab object that you point to an
example anyway).

11.3 Suggestions for future extensions or improvements

� It would be nice to have an option for having interpretation step both before and
after the environmental step, only before it or only after it.

� Global homomorphism is not implemented. Right now, each L-system has its
own homomorphism productions (page 24).

� Extend the programming language by incorporating structures, user-defined func-
tions, or typed variables.

� It would be really good if the extent of labels was included in the bounding box
computed bycpfg .

� It would be helpful to be able to define a command that would be run for files
before input and after output (e.g.gzip).

95

� In case of textures, do not limit the size to power of two (e.g.some new machines
can handle a size of a multiple of 2). Include a switch or create a bigger texture
image with black boundaries and scale the texel coordinates.

� Adding of depth test to postscript output.

� Textures in the background scene.

� It would be better if it was possible to avoid menus by pressing keys. Especially
when the menu causes expose event after it is closed. At least to have a stop
animation button.

� Create an HTML version of this manual.

� Enable user-defined functions incpfg .

� Is there a way how to allow the user to specify a blackbox functions?

� Add antialiasing.

� For a more efficient visualization of environments add the possibility to send the
visualization information (images or GLS files) through additional data stream
or using the current communication process (at the end after all?Es are sent back
to cpfg).

� Use the OpenGL shared display lists for a more efficient displaying of predefined
surfaces.

� Switch between sub L-systems (or tables) on a flag. (this could be done even
now by using a global variable and having a production which would switch the
sub L-system if this variable is changed).

� Switch off environmental step on a flag. (as in the previous point, modules?E

can be introduced just before they are needed, using global variables,e.g.a step
counter — although this solution would not eliminate the environmental pass,
only no data would be transferred betweencpfg and the environment).

� enable different homomorphisms, one for the environment, one for the screen
(actually there could be one for each type of output as well — string, rayshade,
postscript,etc.). Switching from one to another could be controlled by some
variable

� Add a smooth interpolation of colors,e.g. along the stems (even in the shaded
mode).

� Would it be possible to use shared libraries to add mathematical and blackbox
functions without recompiling?

96

� How about the ability to put the labels in screen space?? maybe in a separate@L

parameter 0-1 for each dimension and scaled to fit?

� Might be nice if fonts could be specified per label.

� Allow the user to change format for parameters in string output; currently scien-
tific notation.

� Should there be a window opened when a warning message is sent rather than
just to the console? The console is not necessarily open.

� Allow for different timing within sub L-systems.

� In perspective viewing, can the image be automatically scaled to properly fit
the window (and if this is the case, how should the parameters be passed to
rayshade)?

� How about having the light stay fixed when the object is rotated?

� How about having the system call incorporate additional variable values using
an sprintf?

� Make it possible to access view parameters from productions.

97

Part II

Examples
This section contains examples of many models created bycpfg . The input files
for these examples are included withcpfg and can be conveniently examined and
experimented with using the Virtual Laboratory framework,vlab . Instructions for
getting the Virtual Laboratory distribution are given in Section 3.

12 Quadratic Koch island

Figure 9 shows several approximations of thequadratic Koch islandfrom The Algo-
rithmic Beauty of Plants[7] page 8. They were generated with the command:

cpfg koch.l koch.v

The files’ contents are detailed in the following sections.

12.1 koch.l

lsystem: 0
derivation length: 3

axiom: F-F-F-F

F --> F+F-F-FF+F+F-F

endlsystem

This L-system introduces three turtle symbols:F,+, and- . TheF symbol causes
the turtle to move forward, and draw a straight line. The+ and- symbols cause the
turtle to turn counter-clockwise and clockwise respectively. The amount that the turtle
turns (90� in this example) is specified in the viewing file (Section 12.2).

The axiomF-F-F-F draws a square. The production:

F --> F+F-F-FF+F+F-F

replaces each line segment with a shape as shown in Figure 10. Note that there are no
productions for the+ and- symbols. Symbols with no replacement productions are
replaced with themselves. In other words,cpfg treats this L-system as if it contained
these productions:

+ --> +
- --> -

98

n = 0 n = 1

n = 2 n = 3

Figure 9: Koch Islands generated inn = 0,1,2,and 3 derivation steps

12.2 koch.v

angle factor: 4
initial color: 1
color increment: 0
initial line width: 2
line width increment: 0
viewpoint: 0,0,1
view reference point: 0,0,0
twist: 0

99

�!

Figure 10: The production F�! F+F-F-FF+F+F-F

projection:
parallel front distance: -100000.0
back distance: 100000.0
scale factor: 0.9
z buffer: off
cue range: 0
shade mode: 7
light direction: 1.0, 1.0, 1.0
diffuse reflection: 0
tropism direction: 0.0,1.0,0.0
initial elasticity: 0.0
elasticity increment: 0.0

This is a fairly typical viewing file. The most important value for this fractal is:

angle increment: 90

This tellscpfg that the angle increment used with the+ and- commands is equal to
90�.

13 Koch snowflake curve

Figure 11 shows several derivations of theKoch snowflake. They were generated with
the command:

cpfg snowflake.l snowflake.v

The files’ contents are detailed in the following sections.

13.1 snowflake.l

lsystem: 0
derivation length: 3

100

n = 0 n = 1

n = 2 n = 3

Figure 11: Snowflake curves

axiom: F-F-F

F --> F+F--F+F

endlsystem

The axiomF-F-F draws a triangle. The production:

F --> F+F--F+F

replaces each line segment with the shape shown in Figure 12.

101

�!

Figure 12: The production F�! F+F–F+F

13.2 snowflake.v

angle increment: 60
.
.
.

The + and - commands for this L-system rotate the turtle by60�. The viewing
file for the snowflake is identical to that for the Quadratic Koch island except for the
different angle increment.

14 Combination of islands and lakes

Figure 13 illustrates an application of the turtle symbol:f , which moves the turtle
forward, but does not draw a line. The L-system used to generate this image is shown
below.

14.1 lakes.l

lsystem: 0
derivation length: 2

axiom: F+F+F+F

F --> F+f-FF+F+FF+Ff+FF-f+FF-F-FF-Ff-FFF
f --> ffffff

endlsystem

The axiomF+F+F+F draws a square. The production:

F --> F+f-FF+F+FF+Ff+FF-f+FF-F-FF-Ff-FFF

replaces each line segment with the shape shown in Figure 14.

102

Figure 13: Islands and Lakes

�!

Figure 14: The production F�! F+f-FF+F+FF+Ff+FF-f+FF-F-FF-Ff-FFF

15 Dragon curve

Figure 15 shows several generations of thedragon curve. The L-system used to gener-
ate this image is shown below.

15.1 dragon.l

lsystem: 0
derivation length: 12
axiom: FL

103

n = 1 n = 2

n = 8 n = 12

Figure 15: Dragon Curves

L --> L+RF+
R--> -FL-R

endlsystem

The dragon curve consists of two types of edges, “left” and “right”. The L-system
which generates the dragon curve is based on an L-system with two symbols for edges
Fl andFr:

axiom: Fl
p1 : Fl ! Fl + Fr+

p2 : Fr ! �Fl � Fr

Figure 16 shows the replacements made by this L-system. We can convert this
L-system to one which uses only one type of edge symbol as follows.

104

Fl

Fr

F
rF l

F r
F
l

Figure 16: The productionsFl ! Fl + Fr+ andFr ! �Fl � Fr

Assume temporarily that a production predecessor can contain more than one let-
ter; thus an entire subword can be replaced by the successor of a single production
(a formalization of this concept is termed apseudo-L-systemand is discussed inThe
Algorithmic Beauty of Plants[7]). The dragon-generating L-system can be rewritten
as:

axiom : F l

p1 : F l! F l + rF+

p2 : rF ! �F l � rF

where the symbolsl andr are not interpreted by the turtle. Productionp1 replaces the
letterl by the stringl + rF� while the leading letterF is left intact. In a similar way,
productionp2 replaces the letterr by the string�F l�r and leaves the trailingF intact.
Thus, the L-system can be transformed as follows:

axiom : F l

p1 : l ! l + rF+

p2 : r ! �F l � r

16 Branching structures

Branches in structures such as those shown in Figure 17 are delimited by the turtle
symbols[and] . The turtle saves its state at the start of a branch, and restores it when
the turtle reaches the end. See page 24 ofThe Algorithmic Beauty of Plants[7] for more
details. The following section shows the L-system file for the first “plant”. Productions
for the remaining structures are indicated in Figure 17.

16.1 plant.l

lsystem: 0
derivation length: 5
axiom: F
F--> F[+F]F[-F]F
endlsystem

105

F�! F[+F]F[-F]F F�! F[+F]F[-F][F] F �! FF-[-F+F+F]+[+F-F-F]

X �! F[+X]F[-X]+X X �! F[+X][-X]FX X �! F-[[X]+X]+F[+FX]-X
F�! FF F�! FF F�! FF

Figure 17: Examples of plant-like branching structures

17 Stochastic L-systems

All plants generated by the same deterministic L-system are identical. An attempt
to combine them in the same picture would produce a striking, artificial regularity.
Stochastic L-systems provide for random variations that preserve the general aspects
of a type of plant, but modify the details.

Figure 18 shows several plants generated with the same stochastic L-system (except

106

Figure 18: Stochastic branching structures

for different seed values)11.

17.1 plants.l

lsystem:
seed: 2454
derivation length: 3

axiom: F

F--> F[+F]F[-F]F : 1/3
F--> F[+F]F : 1/3
F--> F[-F]F : 1/3

endlsystem

This is a stochastic L-system. There are three possible successors for theF symbol.
For eachF symbol in the string,cpfg randomly picks one of the three available pro-
ductions. The probabilities for each production are given as1=3, so they are equally
likely to be applied. Note that expressions can be used for the probability. Theseed
keyword specifies a seed for the random number generator.

18 Context sensitive L-systems

Figure 19 shows a plant generated with a context-sensitive L-system.

11Note that theNew Model andNew L-systemmenu options do not reset the seed value, so a different
structure will be generated each time one of these items is selected.

107

Figure 19: A plant generated with a context-sensitive L-system

18.1 context.l

lsystem: 0
derivation length: 30
ignore: +-F

axiom: F1F1F1

1 < 1 > 1 --> 0
1 < 1 > 0 --> 1
1 < 0 > 1 --> 1F1
1 < 0 > 0 --> 0
0 < 1 > 1 --> 1
0 < 1 > 0 --> 1
0 < 0 > 1 --> 1[-F1F1]
0 < 0 > 0 --> 0
* < - > * --> +
* < + > * --> -

108

Figure 20: “Row of Trees” generated using a parametric L-system

endlsystem

The productions of this L-system have the following structure:

1 < 1 > 1 --> 0
Left Context Predecessor Right Context Successor

This production will replace a given1 with 0 only if it is preceded by1 and followed
by 1. The commandignore: +-F tells cpfg not to consider the+, - andF
symbols when matching contexts. Other examples of context sensitive L-systems are
given in Section 1.8 ofThe Algorithmic Beauty of Plants[7].

The production:

* < - > * --> +

lists * for both the left and right context, and consequently, will match a- symbol with
anycontext. The* is not required. The following productions are equivalent:

* < - > * --> +
- > * --> +

* < - --> +
- --> +

19 Parametric L-systems

Figure 20 shows a fractal generated with a parametric L-system.

109

19.1 rowoftrees.l

#define STEPS 7
#define a 86
#define p 0.3
#define d1 2
#define d2 1
#define d3 0

#define q (1-p)
#define h ((p*q)ˆ0.5)

lsystem: 0
derivation length: STEPS
axiom: -(90)F(1)

F(x) : x>0.05 --> F(x*p)+(a)F(x*h)-(a+a)F(x*h)+(a)F(x*q)

endlsystem

This L-system makes use of parameters to control the distance moved by the turtle.
The initiator (production predecessor) is the hypotenuseAB of a right triangleABC
(Figure 21). The first and the fourth edge of the generator subdivideAB into segments
AD andDB, while the remaining two edges traverse the altitudeCD in opposite
directions. From elementary geometry it follows that the lengths of these segments
satisfy the equations

q = c� p and h =
p
pq:

In the next derivation step, the four edges of the generator can be associated with four
triangles that are similar toABC.

20 Global variables in parametric L-systems

Figure 22 shows a fractal generated with a parametric L-system.

20.1 flake.l

#define STEPS 5
#define af 1.08
#define hf 0.41

lsystem: 0
Start: {h = 20; a = 66;}
EndEach: {h = h*hf; a = a*af;}
derivation length: STEPS
axiom: -(90)F(60)

110

A B

C

D

a b

p q

c
Figure 21: Construction of the generator for the “row of trees.” The edges are associ-
ated with triangles indicated by ticks.

Figure 22: “Snowflake” generated using a parametric L-system

F(x) --> F(x/2-h/tan(a))+(a)
F(h/sin(a))-(2*a)
F(h/sin(a))+(a)
F(x/2-h/tan(a))

endlsystem

This L-system makes use of two global variables,h anda. The line:

Start: {h = 20; a = 66;}

111

Figure 23: A stylized apple blossom

sets the initial values at the begining of the derivation, and:

EndEach: {h = h*hf; a = a*af;}

updates the values at the end of each step.

21 Incorporation of predefined surfaces

Figure 23 shows a model which uses predefined surfaces.

21.1 blossom.l

#define SIZE 100
lsystem: 0
derivation length: 3
axiom: /(154)B

B --> [&(72)#;;F(5*SIZE),,!K]
K --> [,S/(72)S/(72)S/(72)S/(72)S]
S --> [ˆ(103)˜c][ˆ(72)˜p][,ˆ(34)F(SIZE)#,[-F(SIZE)][+F(SIZE)]]

endlsystem

21.2 blossom.v

angle factor: 21
initial color: 120
color increment: 32

112

Figure 24: Apple Leaf

initial line width: 20.0
line width increment: 3.0
projection: parallel
front distance: -26000.0
back distance: 26000.0
scale factor: 0.7
z buffer: on
cue range: 0
shade mode: 3
light direction: 1.0,0.0,0.0
diffuse reflection: 25
tropism direction: 0.0,2.0,0.0
initial elasticity: 0.02
elasticity increment: -0.02
surface ambient: .15
surface diffuse: .85
line: ˜ line.s 1.0
surface: c leaf.s 350
surface: p petal.s 500

21.3 leaf.s

This section specifies the surface of a leaf such as the one shown in Figure 24. It
consists of two patches, but there is no interpolation of shading between them.

-28.72 25.68 -20.64 81.29 -7.50 21.85
CONTACT POINT X: 0.00 Y: -20.00 Z: 0.00

113

Figure 25: Apple Petal

END POINT X: 0.00 Y: -19.61 Z: 0.00
HEADING X: 0.00 Y: 0.99 Z: -0.14
UP X: 0.02 Y: -0.14 Z: -0.99
SIZE: 101.93
Patch_1
TOP COLOR: 298 DIFFUSE: 0.75 BOTTOM COLOR: 298 DIFFUSE: 0.75
AL: ˜ A: ˜ AR: ˜
L: ˜ R: ˜
BL: ˜ B: ˜ BR: ˜
-15.51 0.84 -5.00 -22.12 13.03 -5.00 -28.72 42.48 -5.00 -17.84 60.08 -2.50
-7.35 -10.67 -5.00 -20.00 10.00 -7.50 -20.00 36.05 -5.00 -8.90 75.60 0.00
-10.00 -5.00 -5.00 -10.00 15.00 -5.00 -10.00 40.00 -2.50 -1.52 71.71 2.50
0.00 -20.64 0.00 0.00 16.75 0.00 0.00 16.75 0.00 0.00 81.29 21.85
Patch_2
TOP COLOR: 298 DIFFUSE: 0.75 BOTTOM COLOR: 298 DIFFUSE: 0.75
AL: ˜ A: ˜ AR: ˜
L: ˜ R: ˜
BL: ˜ B: ˜ BR: ˜
0.00 -20.64 0.00 0.00 25.00 0.00 0.00 16.41 0.00 0.00 81.29 21.85
4.31 -5.00 -5.00 10.00 22.17 -5.00 10.00 40.00 -2.50 1.20 70.24 2.50
8.59 -7.50 -7.50 15.74 10.00 -7.50 20.00 25.00 -5.00 12.08 68.89 0.00
14.80 4.23 -5.00 25.68 28.94 -5.00 21.80 45.19 -5.00 19.08 51.62 -2.50

21.4 petal.s

This section specifies the surface of a leaf such as the one shown in Figure 25.

114

-5.93 34.60 8.43 50.90 -1.47 7.91
CONTACT POINT X: 23.63 Y: 8.49 Z: 0.13
END POINT X: 23.63 Y: 8.70 Z: 0.37
HEADING X: 0.00 Y: 1.00 Z: 0.00
UP X: 0.01 Y: 0.00 Z: 1.00
SIZE: 39.59
Petal_1
TOP COLOR: 0 DIFFUSE: 0.00 BOTTOM COLOR: 0 DIFFUSE: 0.00
AL: ˜ A: ˜ AR: ˜
L: ˜ R: ˜
BL: ˜ B: ˜ BR: ˜
22.64 8.49 0.00 20.53 15.22 4.03 13.10 30.26 5.80 15.07 40.29 4.35
22.60 8.49 0.00 19.67 15.00 1.97 19.67 30.00 2.14 16.65 49.99 4.83
23.42 8.49 0.00 26.53 15.00 1.80 26.19 30.00 1.97 28.94 50.90 -1.47
22.96 8.43 0.00 26.03 15.00 3.69 34.60 30.75 7.91 32.18 41.26 1.28

22 More predefined surfaces

Figure 26 shows a lilac inflorescence, incorporating predefined surfaces. The specifi-
cation files can be found in$VLABHOME/oofs/ext/examples/ext/lilac .

23 Use of sub-L-systems

Figure 27 shows a model of the sedgeCarex laevigata. In this model, sub-L-systems
are used to generate the male and female spikes. The main L-system, shown in Sec-
tion 23.1 uses the? symbol to incorporate the productions from the sub-L-systems
included from the filesfemale.l , male.l andleaf.l .

23.1 sedge.l

/* internode growth rate */
#define RATE 1.02
/* For a doubling in branch length we want 1.26 times the width */
/* The exponent is equivalent to log(1.26)/log(2) approximately */
/* for 1.1 we use an exponent of .1375 */
/* for 1.2 we use an exponent of .2630 */
/* for 1.26 we use an exponent of .3334 */
/* for 1.3 we use an exponent of .3785 */
#define STEMRATE 1.06
/* width of stem at start of internode */
#define STEMWIDTH .0075
/* Sub L-systems for female spike, male spike and leaf */

115

Figure 26: A lilac inflorescence

#define F_SPIKE ?(2,1.25)axiom$
#define M_SPIKE ?(3,1.25)axiom$
/* leaf L-system parameters: starting delay, time to turn, and new elasticity */
#define LEAF ?(4,1)axiom((a-10),a,(a-13)/100)$

lsystem: 1
/* nice derivation length 90+ (95?) */
derivation length: 95
axiom: /(30)+(10)#(STEMWIDTH)A(4,4)
* < A(a,t) > * : a==30 --> F(1)/(137.5)M_SPIKE
* < A(a,t) > * : t<10 --> F(1)A(a+1,t+1)

116

Figure 27:Carex laevigata

* < A(a,t) > * : t==10 --> F(1)/(137.5)[L(a)][S(a)]#(STEMWIDTH)A(a+1,0)
* < #(d) > * : d<200 --> #(d*STEMRATE)
/* ! is used here so that width won’t be increased */
* < S(a) > * : * --> [ˆ(25)_(0-.1)!(.3)F((30-a)/5)F((30-a)/5)_(0)F_SPIKE]
* < L(a) > * : * --> [ˆ(60)!(.1)LEAF]
* < F(t) > * : t<2 --> F(t*RATE)
* < F(t) > * : !(t<2) --> F(t*RATE/2)F(t*RATE/2)

117

endlsystem
#include "female.l"
#include "male.l"
#include "leaf.l"

23.2 female.l

This L-system contains the line:

lsystem: 2

and generates the image shown in Figure 28. It is included into the main L-system
with the turtle symbols?(2,1.25) , specifying that L-system 2 is to be included and
scaled by a factor of 1.25.

#define I_RATE 1.01
/* internode growth rate */
#define S_RATE 1.05
/* seed growth rate */
lsystem: 2
derivation length: 76
axiom: ////F(5)axiom
* < A(t) > * : t<75 --> F(.2)[B]/(137.5)A(t+1)
* < B > * : * --> &(35)[˜f(1)]/(180)[˜f(1)][˜c(1)#(.1)F(.5)]
* < F(t) > * : t<1 --> F(t*I_RATE)
* < &(a) > * : a<50 --> &(a*S_RATE)
* < ˜f(t) > * : t<2 --> ˜f(t*S_RATE)
* < ˜c(t) > * : t<2 --> ˜c(t*S_RATE)
* < axiom > * : * --> [&(30)/(180)˜f(2.25)#(.1)F(.5)]F(.1)/(180)

[&(30)/(180)˜f(2.25)#(.1)F(.5)]/(137.5)A(0)
endlsystem

24 L-System defined surfaces

Figure 29 shows several stages in the development of aLychnis coronariaflower. The
specification files can be found in:

$VLABHOME/oofs/ext/examples/ext/lychnis
This model uses Bezier surfaces specified by the L-system using the@PD(i,s,t)

symbols. The filelychnis.l contains many parameters controlling both the timing
of the development, and the angles and sizes of various components.

118

Figure 28: Female spike

Figure 29: Lychnis

25 Other examples

Other examples, imllustrating homomorphism, decomposition, the use of generalized
cylinders, and various other features can be found either on the system (see the objects

119

noted at the margins in places where various features are described) or in [2, 3].

120

References

[1] HANAN , J. S. Parametric L-systems. PhD thesis, University of Regina, Regina,
Saskatchewan, Canada, 1992.

[2] M ĚCH, R. Modeling and Simulation of the Interaction of Plants with the Environ-
ment using L-systems and their Extensions. PhD thesis, The University of Calgary,
Calgary, Canada, November 1997.

[3] M ĚCH, R., PRUSINKIEWICS, P., AND HANAN , J. Extensions to the graphical
interpretation of L-systems based on turtle geometry. Tech. Rep. 97/599/01, Dept.
of Computer Science, The University of Calgary, Calgary, Canada, 1997.

[4] M ĚCH, R., AND PRUSINKIEWICZ, P. Visual models of plants interacting with
their environment.Computer Graphics (SIGGRAPH ’96 Conference Proceedings)
(August 1996), 397–410.

[5] PRUSINKIEWICZ, P., AND HANAN , J. L-systems: From formalism to program-
ming languages. InLindenmayer systems: Impact on theoretical computer science,
computer graphics, and developmental biology, G. Rozenberg and A. Salomaa,
Eds. Springer-Verlag, Berlin, 1992, pp. 193–211.

[6] PRUSINKIEWICZ, P., JAMES, M., AND MĚCH, R. Synthetic topiary.Computer
Graphics (SIGGRAPH ’94 Conference Proceedings) 38(July 1994), 351–358.

[7] PRUSINKIEWICZ, P.,AND LINDENMAYER, A. The algorithmic beauty of plants.
Springer-Verlag, New York, 1990 (second printing 1996). With J. S. Hanan, F. D.
Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.

[8] WOO, M., NEIDER, J.,AND DAVIS, T. The OpenGL Programming Guide, Second
Edition. Addison-Wesley.

121

A L-system Input Grammar

Lfile ! Lsystems BlankLines

Lsystems ! Lsystems Lsystem

j /* empty */

Lsystem ! Header Productions Decomposition Homomorphismendlsystem
<newline>

Homomorphism ! homomorphism HomoWarning < newline > HomoItems

Productions

j /* empty */

HomoItems ! HomoItems HomoItem

j /* empty */

HomoItem ! HomoSeed

j ProdDepth

HomoWarning ! : warnings
j : no warnings
j

HomoSeed ! seed Expression < newline >

Decomposition ! decomposition DecompWarning < newline > DecompItems

Productions

j /* empty */

DecompWarning ! : warnings
j : no warnings
j

DecompItems ! ProdDepth

j /* empty */

ProdDepth ! depth Expression < newline >

Header ! BlankLines Label Items Axiom

BlankLines ! fBlankLineg

BlankLine ! <newline>

Label ! lsystem: Characters<newline>

Items ! fItemg

122

Item ! Seed
j Dlength
j Ignore
j Consider
j BlankLine
j Defines
j Startblock
j Endblock
j Starteach
j Endeach

Seed ! seed: Characters<newline>

Dlength ! derivation length: Expression<newline>

Consider ! consider: Characters<newline>

Ignore ! ignore: Characters<newline>

Characters ! f<character>g

Startblock ! start: Block<newline>

Endblock ! end: Block<newline>

Starteach ! start each: Block<newline>

Endeach ! end each: Block<newline>

Block ! f Statementsg

Statements ! fStatementg

Statement ! Assignment
j Procedure

j IfStatement

j WhileStatement

j DoStatement

Assignment ! LHS= Expression; BlankLines

LHS ! <identifier>
j <identifier>ArrayRef

ArrayRefs ! f ArrayRef g

ArrayRef ! [Expression]

123

Procedure ! Expression ; BlankLines

IfStatement ! if (Expression) BlankLines Block BlankLines

j if (Expression) BlankLines Block else BlankLines

Block BlankLines

WhileStatement ! while (Expression) BlankLines Block BlankLines

DoStatement ! do BlankLines Block while (Expression) ; BlankLines

Defines ! define DefineBlock < newline >

DefineBlock ! f BlankLines DefStatements g

DefStatements ! fDefStatementg

DefStatement ! ArrayDefStatement

j ExternalDefStatement

ArrayDefStatement ! array ArrayDefs ; BlankLines

ArrayDefs ! ArrayDef f , ArrayDef g

ArrayDef ! <identifier>ArrayDims

j <identifier>ArrayDims = ArrayInitBlock

ArrayDims ! fArrayDimg

ArrayDim ! [Expression]

ExternalDefStatement ! external ExternalDefs ; BlankLines

ExternalDefs ! ExternalDef f , ExternalDefg
j ExternalDef

ExternalDef ! <identifier>
j <identifier>ArrayDims

124

Axiom ! axiom: Modules<newline>

Productions ! fProductiong

Production ! BlankLine
j Predecessor[Conditional] --> Successor<newline>
j Predecessor[Conditional] -o> Successor<newline>

Predecessor ! Strictpred
j Lcontext< Strictpred
j Strictpred> Rcontext
j Lcontext< Strictpred> Rcontext

Lcontext ! *
j FormalModules

Strictpred ! FormalModules

Rcontext ! *
j FormalModules

Conditional ! : Condition
j : Precondition Condition
j : Condition Postcondition
j : Precondition Condition Postcondition
j

Precondition ! Block

Postcondition ! Block

Condition ! *
j Expression

Successor ! StrictSucc
j StrictSucc Probability

StrictSucc ! *
j Modules

125

Probability ! : Expression

FormalModules ! fFormalModuleg

FormalModule ! Symbol
j Symbol(FormalParameters)

Modules ! fModuleg

Module ! Symbol
j Symbol(Parameters)

Symbol ! <character>

FormalParameters ! FormalParametersf, FormalParameterg

FormalParameter ! <identifier>

Parameters ! Expressionf, Expressiong

Expression ! Expressionjj Expression
j Expression&&Expression
j Expression== Expression
j Expression!= Expression
j Expression<> Expression
j Expression< Expression
j Expression<= Expression
j Expression> Expression
j Expression>= Expression
j Expression+ Expression
j Expression- Expression
j Expression* Expression
j Expression/ Expression
j Expression%Expression
j Expression̂ Expression
j - Expression
j ! Expression
j (Expression)
j Function
j Name
j Value

j LValue

j String

126

Function ! FunctionName(Expression)

FunctionName ! tan
j sin
j cos
j atan
j asin
j acos
j ran
j nran
j bran
j biran
j srand
j exp
j log
j floor
j ceil
j trunc
j fabs
j sign
j stop
j sqrt
j printf
j fprintf
j fopen
j fclose
j fflush
j fscanf

Value ! <number>

Name ! <identifier>

LV alue ! &<identifier>
j &<identifier>ArrayRefs

String ! " <string> "

127

Index
animate mode, 7
animation file, 7, 46
array, 20

background scene, 41, 51
buffering, 8, 46

color, 42
colormap, 7
command

define, 20
end, 20
endeach, 20
lsystem, 22
start, 20
starteach, 20

command line parameters, 6
communication

library, 66, 74
module, 34, 62
multiple processes, 9
specification file, 66, 70
type, 70

contour, 41, 49

debugging mode, 6
decomposition, 26
drawing parameters, 38

environmental process, 72
debugging, 80
example, 77

environmental step, 62

functions, 21

generalized cylinder
specification, 32
twist, 41

homomorphism, 10, 23
instantiation, 25

maximum depth, 24
warnings, 24

inventor output, 10

L-system
environmentally-sensitive, 34
main, 22
open, 34, 62
sub L-system, 22

L-system file, 7
light, 42
line, 40

material table, 7, 8
menu

animation, 15
main, 13
menu bar, 8
overlay menu, 8

module
communication, 34, 62

off-screen rendering, 8

pixmap, 8
polygon specification, 30
postscript output, 10
preprocessor, 6
production

multiple sets, 22
programming statement, 18
projection, 37

rayshade, 40
rayshade output, 10

string
input from stdin, 9
output, 10, 59

surface, 41
drawing, 31

128

specification file, 48

texture, 43
tropism, 45

changing parameters, 33
tsurface, 41

specification file, 49
turtle

parameters
changing, 28
setting, 36

rotations, 27
scale, 29, 37

variable
global, 20

verbose mode, 6
view file, 7, 36
view parameters, 37

warning mode, 6
window

position, 8
size, 8, 13
title, 8

129

