CPFG
Version 3.4
User's Manual

Radomi Méch
May 7, 1998

based on the CPFG Version 2.7 User's Manual by
Mark James
Mark Hammel
Jim Hanan
Radomf Méch
Przemyslaw Prusinkiewicz

Contents

1 Introduction 3
2 Machine requirements 5
3 Distribution 5
| Reference 6
4 Command line parameters 6
41 General 6
4.2 Graphicsandwindowing oo 7
4.3 Specialworkingmodes o 8
4.4 OUutpul o e e e e e 9
45 Usageexamples e 11
5 User interaction 13
51 Mainmenu e 13
5.2 Animationmenu 15
6 Input files 16
6.1 L-systemfile 16
6.1.1 Variables 17
6.1.2 Programmingstatements 17
6.1.3 Global programming statements 18
6.1.4 AIMayS. e e e 19
6.1.5 Predefinedfunctions 19
6.1.6 Subl-systems 20
6.1.7 Homomorphism 22
6.1.8 Decomposition. 24
6.1.9 Interpretedsymbols., 25
6.2 Viewfile. 34
6.2.1 Setting turtle’s parameters 34
6.2.2 Settingtheview L 35
6.2.3 Generaldrawing parameters 36
6.2.4 Lines, surfaces, and generalized cylinders. 38
6.2.5 Color-map mode: Colorsandlights 39
6.2.6 Material mode: Lightsandtextures 40
6.2.7 TropiSMS 42
6.3 Animationfile 44
6.4 Otherinputfiles. 46
6.4.1 Surface specificationfile 46
6.4.2 Contour specificationfile 47

6.4.3
6.4.4
6.4.5

7 Output files

7.1 Rayshade output
Materials
View parameters and lights

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6

Tsurface specificationfile
Texture imagefile.
Background scene specification file

Boundingbox
Predefined surfaces

Instantiated objects

The mainobject.

7.2 Postscriptoutput L.
7.3 L-systemstring

7.4 Graphics Library Statements format

7.5 |Inventoroutput

8 Communication with environmental process
8.1 OpenlL-systems...............

8.2 Implementation of the modeling framework

8.3 Visualization of the environment

8.4 Two process communication

8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6

Specification of the communication

Environmental process
Data structures
Library functions

Examples
Troubleshooting

8.5 Distributedsystem

8.5.1
8.5.2
8.5.3

Communication library functions .
Initialization program
Drawing program

9 Miscellaneous features

9.1 Rayshade instantiation
9.2 Sending commands to cpfg throughsockets

10 Limitations
10.1 Using the hardware colormap

10.2 Using cpfg on less than 24-bit screens . .

10.3 Use of symbol # in the L-system file
10.4 Transparent objects

L This section is incorporated from [2].

............. 83

11 Things to do 93
11.1 Problems 93
11.2 Fixestothemanual, 95
11.3 Suggestions for future extensions or improvements. 95

I Examples 98

12 Quadratic Koch island 98
12.1 koch.l e 98
12.2 koch.v 99

13 Koch snowflake curve 100
13.1 snowflake.l 100
13.2 snowflake.v 102

14 Combination of islands and lakes 102
14.1 lakes.l 102

15 Dragon curve 103
15.1 dragon.l 103

16 Branching structures 105
16.1 plantl e 105

17 Stochastic L-systems 106
171 plants.l. e 107

18 Context sensitive L-systems 107
18.1 context.l e 108

19 Parametric L-systems 109
19.1 rowoftrees.l 110

20 Global variables in parametric L-systems 110
20.1 flake.l e 110

21 Incorporation of predefined surfaces 112
21.1 blossom.l e 112
21.2 blossom.v e 112
21.3 leaf.s. e 113
21.4 petal.s 114

22 More predefined surfaces 115

23 Use of sub-L-systems

231 sedgeld
232 femalel

24 L-System defined surfaces
25 Other examples
References

A L-system Input Grammar

Index

115

.............. 115
............. 118

118

119

121

122

128

1 Introduction

Theplant andf ractalgenerator withcontinuous parametersffg) is a program for
modeling plants and visualizing their development. It can also be used to generate
images of 2D and 3D fractals. Models are expressed using the formalism of L-systems.

This manual assumes that the reader is familiar with the concepts of L-systems and
turtle interpretation presented irhe Algorithmic Beauty of Plan{g], as well as the
elements of th€ programming language.

Part | contains reference materials. It descrifygfy usage, user interaction, and
input and output file formats. Part Il contains examples, from an L-system for a simple
fractal to realistic models of plants.

2 Machine requirements

Thecpfg program runs on SGI workstations, and works best on machines with 24
bit planes. The program will run on machines with only 8 bit planes, but many of the
example models will not show up in the correct colors. The described distribution has
been compiled and tested using IRIX 5.3 release of the operating system.

A C macro preprocessor is also required (the default preprocessor is invoked by
cpfg using thecc -Ecall).

3 Distribution

The simplest way to usepfg is within the Virtual Laboratory Environmentlab).

The completepfg andviab software distribution (binaries only) with sample mod-

els and documentation is available at:
http://www.cpsc.ucalgary.ca/projects/bmv/viab/index.html

Part |
Reference

4 Command line parameters

A call to cpfg takes the following form:

cpfg [-sstringsizg [-v] [-V] [-d] [-P preprocessdr[-a] [-e environmentfile] [g]
[-pipestrb] [-Ccommunicatiorsetupstring] [- S sockethum] [-¢c mapni [-w xsize
ysizé [-wp xpos ypok[-wt windowtitle] [-n{n] colormanpfile] [-Mn] materialfile] [-
mb [-pm [-sb][-0] [-homq] [-rgb rgbfile] [-ras rasfilg [-tga tgafilg][-rle rlefile]
[-ray rayfile] [-ps psfild [-str textstringfilg [-strb binarystringfilgd [-gls glsfilg]
[-vv wfilg [-iv ivfile] L-systerdile Viewfile [Animationfile]

TheL-systenfile andView.file arguments are mandatory; the arguments in square
brackets are optional. A call tpfg without any arguments prints a message with a
list of options.

4.1 General

-sstring.size The value of the integestring sizedefines the initial space allot-
ment for a string generated by an L-system. The default value is
150,000. Note that there is no space betwesemndstring_size

-V This option putxpfg in verbose mode, in which a trace of input
data and execution details are printedtdout

-v This option putspfg in warning mode. A trace of input data and
execution details (significantly reduced compared to the verbose
mode) are printed tetdout

-d This option putccpfg in debugging mode. Selected information
pertinent to theepfg operation is printed tstdout This mode is
intended only for code development.

-P preprocessor Changes th& macro preprocessor applied to the L-system file
and view file. The default preprocessor is invokeddpyg us-
ing thecc -E call. For exampleP acpp invokes the ANSIC
preprocessor.

-a The program starts in animate mode (with animate menu). This op-
tion is necessary in off-screen rendering modgs {pipestrb)
to create an animation according to the animate file.

-e communicatiorspecificationfile specifies parameters of plant-field communi-

L-systemnfile

View file

Animationfile

cation and switches on environmental mode, in whiipfg com-
municates with an external program simulating the environment.

The L-system definition. By convention, this file name has suffix
.. See Section 6.1 for details.

Contains viewing, rendering, and drawing parameters including
the names of surface-specification files. By convention, this file
name has suffixe. See Section 6.2 for details.

Contains parameters controlling frame by frame production of im-
ages for animation purposes. By convention, this file name has
suffix .a. See Section 6.3 for details.

4.2 Graphics and windowing

-cmapnr

The value of the integamapnr defines the 256-entry portion of
the color or material table to be used ¢yfg . A value of 0 indi-
cates the first 256 entries, 1 the second 256, and so on (up to 15).
The background s colored using the first entry of the selected color
table or using the emissive color of the first entry of the selected
material table. The colors or materials used by the turtle are in-
dexed relative to this entry. The default valuenadipnr is 1. Note

that there is no space between andmapnr on the command
line.

-nfmapnr] mapfile Instead of the index mode, which uses hardware colormap, an

RGBA drawing mode is switched on. In this case, color indices are
read from a file containing 256 triplets of bytes defining red, green,
and blue. The integenapnr specifies the 256-entry portion of the
color table as for optiorc- (-mcorresponds tal). Note that there

is no space betweem andmapnr on the command line.

-Mmapnr] matfile Instead of the the index mode, which uses hardware colormap,

-wxsize ysize

an RGBA drawing mode with OpenGL lighting computations is
used. In this case, the turtle paramatetor indexspecifies an
index to a material defined in a material file, which can be created
by programmedit . The integemapnr specifies the 256-entry
portion of the material table as for option {-M corresponds to
-ML). Note that there is no space betwebhandmapnr on the
command line.

This option tellcpfg what should be the size of the opened draw-
ing window. For example;w 1024 683 will open a window

suitable for saving image files with an aspect ratio of 3:2, appro-
priate for film recorders.

-Wp Xpos ypos Specifies the initial position of the window (of its top left corner).
The automatic positioning of windows has to be switched on (see
the IRIX window manager menu Desktop/Customize/Windows).

-wt windowtitle This option changes the title of the window (the icon name is still
cpfg).

-mb In addition to popup menus, a menu bar is created at the top of the
cpfg window.

-pm cpfg uses an X pixmap as a back buffer. The drawing is slower
but handling of expose events is very fast plus the full 24 bit per
pixel resolution can be used even in double-buffered mode.

-sb Single-buffer mode is set (this option takes precedence over the
commandsingle buffer in Animationfile). In the double-
buffered RGBA mode, a single-buffer mode may be necessary to
avoid dithering. This switch overrides switgimand a pixmap is
not used.

-0 Menus do not use SGI overlay planes, which results in producing
an expose event and redrawing the generated structure every time
they overlap the drawing window.

4.3 Special working modes

-g Performs an off-screen rendering. A colormap or a material file
must be specified.g. the off-screen rendering does not work with
hardware colormaps). If the switéhis not includedcpfg will
generate the string up to the last generation step (definéd in
systenfile) and save particular files as specified byb-, -ras ,
etc. With switch a, all frames as defined in the animate file are
saved. It is recommended to specify filenames as format strings,
e.g. plant%03d.rgh

ADD: Format strings are used in a few other places. It would be
nice to have a section explaining the general setup, along with us-
age examples.

-pipestrb The program uses the off-screen mode and converts a binary L-
system string file coming ostdininto a desired format (as spec-
ified by options kgb , -ras , etc.), which can be output also to
stdout(except for image formats) by specifying the watdoutas

a filename for a selected format. # is present, further generation
(as specified by animate file) is performed. The opfifpestrb

can be used, for example, to pipe stored strings directly to rayshade
and avoid keeping big rayshade files.

-Ccommunicatiorsetupstring Specifies connections to other processes in a dis-hoofs/cpfg3.2.exam-

-S socketnum

4.4 Output
-rgb rgb_file

tributed simulations. The communication setup string is a singleples/Distr.environ
string (with no spaces). Each connection starts with a symbol

wherez is one ofm, s, andc, followed by several parameters,

divided by commas. The three types of connections are:

-m foramaster connection-epfg controls the data exchange
with the given program. The switchm is followed by a
communication specification file for the given connection
and a socket number
(-m,commspecfile,sockeinun). The same file and socket
number has to be specified for the slave process.

-S for a slave connection — the other program controls the data
exchange. The switch s is followed by a communication
specification file for the given connection, a socket number,
and the name of the machine on which the master process
is running
(-s,commspecfile,sockenum,mastemachine). The same
file and socket number has to be specified for the master
process.

-C connection to a process controlling the whole simulation.
The programcpfg confirms its successful execution by
sending a predefined character through this connection. The
switch —c is followed by a socket number and the name of
the machine where the main process is runningéckeinum,maching

See an example in Section 4.5 and more details on the distributed
simulations in Section 8.5.

The program is able to process text commands (corresponding thoofs/cpfg3.4.exam-
menu items) coming through the specified socket (using progranples/socket.commands
commandclient— see Section 9.2).

Specify name for the 24-bit SGI RGB image file. Note that any
window that appears on top of tlopfg window when the snap-
shot is taken will be included in the image.

-ras rasfile

-tga tgafile

-rle rle_file

-ray ray-file
-ps psfile

-iv iv_file

Specify name for the color-index SGI image file. Note that any
window that appears on top of tlopfg window when the snap-
shot is taken will be included in the image.

Specify name for the Truevision Targa image file. Note that any
window that appears on top of tlopfg window when the snap-
shot is taken will be included in the image. Available also in sun
version (unlike rgb and ras formats).

Specify name for the URT (Utah Raster Toolkit) run-length en-
coded image file. Note that any window that appears on top of the
cpfg window when the snapshot is taken will be included in the
image. Available also in sun version (unlike rgh and ras formats).

Specify name for the rayshade outputZile
Specify name for the Postscript output file (see Section 7.2).

Specify name for the Inventor output file.

-str textstring.file Specify the name of the file to which the string generated by

cpfg will be output in text format (see Section 7.3).

-strb binary_string_file Specify the name of the file to which the string generated

-homo

-gls glsfile

-vv v file

by cpfg will be output in binary format (see Section 7.3).
strings are output after applying homomorphism.

Specify the name of the file to which the structure generated by
cpfg will be output in gls format (a set of OpenGL-like com-
mands — see Section 7.4 for detailed description). So far only
triangles of generalized cylinders and predefined surfaces are out-
put.

Specify the name of the file to which the bounding volume infor-
mation will be output. See thaox entry in Section 6.2.

-f animpathformat Specify the directory and the format of file names for saving

consecutive animation frames, when selecBagin Animate

from the animation menu (see Section 5.2). This switch is obsolete
with the possibility to specify file names as format strings, e.g.
plant%03d.rgh

2Rayshade is a public domain ray tracer developed by Craig KBfifg currently supports rayshade
version 4.0, which is available at
ftp://graphics.stanford.edu/pub/rayshade/rayshade4.0.tar.Z

10

A filename may be specified as a format string (plgnt%03d.rghand the number of
the generation step is automatically inserted. This can be used for saving animations.
A filename may be specified also as “stdout” and the files are sent to a standard
output. Often used in pipe modepipestrb).
In the case of string output (both in the text or binary format), the specified filename
is also used as the default name for the input of the string.

4.5 Usage examples
The most basic call topfg contains only an L-system and a view file:

cpfg fractal.l fractal.v
The next call includes an animation file, and specifies that Postscript output is to be
written to the filefractal.ps . The user must choose ti@utput postscript item
from the main menu to write to this file (Section 5.1).

cpfg -ps fractal.ps fractal.l fractal.v fractal.a
For large models, model generation can be made faster by specifying a larger initial
string size on the command line. The default initial string size is large enough for most
models. If a model is too large for the given string siggfg will reallocate the string
and output the messa@tring is too long; reallocating

cpfg -s1000000 complexplant.] complexplant.v
In the next examplepfg uses color map number 3 and enters verbose mode. Output
file names are specified for both rayshade and Postscript formats. Note that the options
can be listed in any order, but that the L-system, view and animation files must be

specified last.

cpfg -ray plant.ray -c3 -v -ps plant.ps plant.l plant.v
plant.a

In all previous examples, a hardware colormap was used for coloring the surfaces.
A colormap can be specified on the command line.

cpfg -m plantl.map -m2 plant2.map plant.l plant.v

Instead of a colormap a material file can be included, improving the results of the
shading calculations.

cpfg -M plant.mat plant.| plant.v

11

It is possible to generate output files without the drawing window, in an off-screen
mode. In the example below, for all steps specified in the animate file a rayshade file
will be output.

cpfg -g -a -ray plant %03d.ray -M plant.mat plant. plant.v
plant.a

Instead of keeping potentially big rayshade files, it is possible to output only the L-
system string and then pipe it througbfg directly to rayshade.

cat plant015.strb | cpfg -g -pipestrb -ray stdout -M plant.mat
plant.| plant.v | rayshade -O plant015.rle

In the next example, the program monitors a specified socket and if a text command
representing a menu item comes through the socket, it performs it as if the item was
interactively chosen in the menu.

cpfg -S 1000 -M plant.mat plant.| plant.v plant.a

The following call runs an interactive simulations with the environment defined by
an external process (as specified in theglnt.e

cpfg -M plantmat -e plant.e plant.| plant.v plant.e

The plant can be also executed as a part of a distributed simulation (although it will be
very likely done by another program and not by the user). In this case, there are two
connections to two environmental processes (whose executables are specified in files

plantl.e andplant2.e).

cpfg -C -m,plantl.e,200,-m,plant2.e,300 -M plant.mat plant.|
plant.v plant.e

12

5 User interaction

The left mouse button is used to rotate the model irciifg window. Holding down

the left button and moving the mouse will cause the model to rotate in the direction of
mouse movement. Moving mouse up and down while holding down the middle mouse
button rescales the model in thpfg window.

A menu, activated using the right mouse button, is provided for interaction with
cpfg . The available menu items depend on command line options and the current
state of the program. The menu controls re-reading of input files, regeneration of the
image, output in a variety of formats, and the switch to and from animate mode. Once
animate mode is selected, animation items are added to the menu. These items control
the animation process.

With the menu bar present in tepfg window (program optionmb), the program
starts in animate mode and all menu items are accessible also from the two pulldown
menus on the menu bar.

5.1 Main menu
The main menu is composed of the following items:

New Model Rereads the L-system and view files, generates a new string and inter-
prets it to create a new image. The model is automatically centered in
the window, or placed according to user-specified viewing parameters
as described in Section 6.2.

New L-system Rereads the L-system file, generates a new string and interprets it to
create a new image without modifying the view.

New homomorphism Rereads the L-system file containing homomorphism and re-
interprets the current string using the new homomorphism (for more
details see Section 6.1.7).

New View Rereads the view file and re-interprets the existing string to create a new
image. The model is automatically centered in the window, or placed ac-
cording to user-specified viewing parameters as described in Section 6.2.

New environment Restarts the process simulating the environment. This menu item
appears only if a switche-environmentfilés included in the command
line (cpfg communicates with an environmental program). May cause
problems if the environmental programs relies on the data from previous
simulation steps.

Window size Allows the user to set the size of the output window.

Output Allows access to a sub-menu of output file formats:

13

Input

Image Saves the image in the window in various image for-

mats:

RGB SGI rgbh format

RAS SGI colormap format

TGA TrueVision Targa format

RLE Utah Raster Toolkit image format
Rayshade rayshade 4.0 scene description file
Postscript Postscript scene description file
String current string in two formats:

text simple text format

binary internal representation

GLS format graphics library statements format
View Volume bounding volume information
Inventor SGl Inventor format object.

See Section 6 and Section 7 for more detail on file formats. Each of
these entries invoke a sub-menu allowing the user to save using a default
filename (the name of the L-system file with an appropriate extension
or the file specified on the command line) or to save under a different
name. In the second case, a special window is opened, allowing the user
to browse through the current directory and select the output file or to
type in the name. The modified filename is then stored and it appears as
the default output name next time user want to output the structure using
the same output format. In the case of string output (both in the text or
binary format), the stored filename is also used as the default name for
the input of the string.

Inputs data from the following formats:

String current string is read from a file of type:

text simple text format
binary internal representation

Both entries invoke a sub-menu allowing the user to input from
a file with the default name (the name of the L-system file with
an appropriate extension or the file specified on the command
line — using-str or-strb) or from a selected file. In the
second case, a special window is opened allowing the user to
browse through the current directory and select the input file.
The modified name is then stored and it appears as the default
input name next time user want to input a string using the same
format. The stored filename is also used as the default name for
the output of the string.

14

Animate mode selects an animation mode, which has its own menu (see Section 5.2).

Exit Exitscpfg .

5.2 Animation menu

The animation process begins with input of parameters, incldfastgrame last frame
andstepfrom the animation file (see Section 6.3). If the animation file is not specified
on the command line, the animation parameters are set to its defagltsh first
frameis 1, thelast frameis equal to thealerivation stepspecified in the L-system file,
and thestepis equal to 1).

In the animation mode, an animation menu becomes available. The menu contains
all items as the main menu (except the itdmimate mode). In addition, the fol-
lowing items become available, allowing the user to control the animation process:

Step Displays the frame resulting from the nestepderivation steps. If this
goes past thiast frame thefirst framewill be displayed.

Run Displays consecutive animation frames after esiglpderivation steps
until thelast frameis reached or passed.

Forever The same aRun except that when thiast frameis reached, the anima-
tion returns automatically to tHest frameand continues.

Stop Pauses the animation at the current frame.

Rewind Redisplays the animation from tffiest frame

Clear Removes the currentimage from the window.

New animate Rereads the animation parameter file.

Begin Recording Gives access to a sub-menu allowing the user to initiate record-
ing in a selected file format. The sub-menu is similar to @heput
sub-menu. After pickindRun from the animate menu, all subsequent
frames are recorded, un8top Recordingis selected. For an L-system
“foobar.l " and selecting the rgb output, for example, the frames are
recorded by default afobarl.rgb , foobar2.rgb , etc., unless
the default file is set using a corresponding command line option (in
this casergb filenamé@. Note that thdilenamecan be specified as a
format string,e.g. plan%03d.rgh Recording formats and default file
extensions are the same as for Output files.

Stop Recording Stops the recording of animation frames.

Don’'t Animate leaves the animate mode and switches back to the main menu.

15

6 Input files

6.1 L-system file

The essential theoretical notions of L-systems are describBlddrilgorithmic Beauty
of Plantg[7]. The syntax is defined formally in Appendix A. Every L-system file spec-
ifies a derivation length, a list of symbols to be ignored (or considered) when context
matching, an axiom, and a set of productions, which may be either deterministic or
stochastic. A production consists of a predecessor and a successor with optional left
and/or right contexts. The L-system can be defined over an arbitrary alphabet which
does not contain the asterisk (*) or any separators (space, tab, etc.). Section 6.1.9 lists
the symbols which have a graphical interpretation.

The typical file has the following format in the deterministic case:

Isystem: label

derivation length: d

ignore: symbols

axiom: axiom

Icontext< predecessor rcontext: {« } C{ 3} --> successor
Icontext< predecessor rcontext: {a } C{ 3} --> successor

Icontext< predecessor rcontext: {a } C{ 3} --> successor
endlsystem

The text intypewriter font , all spaces, and all special symbols must be
entered as shown. The derivation lengtimust be a positive integer or zero. The
symbols list should include all symbols to be ignored while context matching. Alter-
natively, symbols to be considered when context matching can be specified following
aconsider: keyword. Theanxziom, and thepredecessor string in each production
must be nonempty. Theuccessor strings in each production may be empty, in which
case it must be represented by an asterisk (*). [Ebetext andrcontext strings may
be empty, in which case they can be represented by an asterisk (*) or left out completely
along with the respective and> symbols. A production may optionally include a con-
dition C, which is a boolean expression usi@dike syntax. The production will be
used only if this expression evaluates to true. If a production has a condition, either
{a} or {8} or both may also be included. They represent lists of semicolon terminated
statements expressed usi@gike syntax. If{a} is given, it specifies statements to
be executetbeforeevaluating the conditiody’. If {3} is given, it specifies statements
to be executedfter if the result of evaluating the condition is true. For example, the
following is a valid production:

A(x,y) : {z = xty; } 2210 {n = cos(xy); } --> A(nz)

Note that all parameters are assumed to have real (floating point) values.
The end of an L-system specification is signaled byatha@isystem keyword.

16

For a stochastic L-system, a seed for the random number generator is also required
and the typical file has the following, slightly modified, format:

Isystem: label

seed: i

derivation length: d

ignore: symbols

axiom: axiom

Icontext< predecessor rcontext: {a } C{ 8} --> successor p;
Icontext< predecessor rcontext: {« } C{ 3 }--> successor p.

Icontext< predecessor rcontext: {« } C{ 3} --> successor p,
endlsystem

The new first line specifies the integer séddr the random number generator. Each
production has a probability factor represented by the floating point yedissociated
with it. SeeThe Algorithmic Beauty of Plan{g] page 28 for more information.

6.1.1 Variables

Variable names are defined as in C. There are two types of variables, float and character
string, but character strings require special handling as they are passed by reference.

The variables are defined in the whole scope of an L-system. Often, if a variable is
used in a production, it has to be defined in

There is a block structure controlling their scope. There is a special definition
section for arrays, which are indexed as in C (Section 6.1.4).

ADD (Jim?): an explanation of the "external” statement that can now appear in the
define section of cpfg. Basic syntax is the keyword "external” followed by a comma-
separated list of variable names and array definitions. The arrays require their dimen-
sions to be specified | believe.

6.1.2 Programming statements
There are three types of statements which can be included in L-system productions:
e The first type is represented by assignment statements of the form
varname = expression;

where variable names are specified as in C angression is an arithmetic
expression. In this case the expression can also include local variables which
have been assigned a value in previous assignment statements (within the same
production), as in the following production:

A(Y): {x=y/2; s=x*x;} s<5 {z=sqrt(y);} — B(z)C(z+1).
All variables have floating point values.

In case of functioprint f, it is possible to omit the assignment part and ignore
the value returned by the function:

17

{a=a+1;printf("a=%f \n",a); }.

¢ The second type of statement includes conditional statements
if (condition){statmt; ... statmty;}

and
if (condition){statmt; ... statmty,;} else{statmty; ... statmt,;}

wherecondition is a logical expression arddatmt; are statements.

¢ The third type of statement is represented by loop statements
while (condition){ statmt;; ... statmt,;}

and
do {statmty; ... statmt,;} while (condition);

The meaning ofondition andstatmt; is the same as for conditional statements.

Statements are performed every time the predecessor and left and right contexts
match, before the condition is evaluated (even if it results in not applying the produc-
tion) and before the matching production is found. Thus statemens be applied
to precompute expressions used in the condition. A &@tements are performed after
a condition is evaluated as true, but before the predecessor is replaced by the successor.

If a production does not have a condition, the empty conditibas to be used:

Icontext< predecessor rcontext: * { 3 } — successor

Compared to the C syntax, the syntax of L-system programming statements has to
follow these specific rules:

e Each assignment statement or a function call has to be terminated with a semi-
colon, even if it is a last statement in a block of statements (just befjre ’

e Even if there is a single statement following the keywofdelse, while, and
do, it has to be enclosed in curly brackets.

e Operators like++, ——, + =, — =, * =, / =, etc.are not supported.

6.1.3 Global programming statements

Similarly to programming statements associated with productions operating on local
variables, global statements, executed at specific points of the simulation, can be used
to define global variables accessible in all productions. Inciig language, it is
possible to define four blocks of statements, which are defined before the list of L-
system productions, using the commands:
Start:{statements} processed at the beginning of the simulation,
End:{statements} processed at the end of the simulation,
StartEach{statements} processed at the beginning of each step,
EndEach{statements} processed at the end of each step.

18

The statements are of the same type as production statements introduced in the previous
section. Variables used on the right side of an assignment statement in one of these four
statement blocks are considered as global variables and can be accessed in any other
block or production. A conflict of two productions accessing the same global variable

at the same time is avoided because in the modeling progpémpthe parallel rewriting
process is captured by applying the productions sequentially, from left to right [5].

6.1.4 Arrays

The values of parameters of a plant model depend frequently on the order of an apex, or
a branch or on another value such as the apex age or vigor. It is possible, for example,
to have a separate production for each order with a successor using different values of
growth parameters. But it is more effective to define an array of values and use only
one production.
To define arrays, thepfglanguage was extended by the commédnfline followed hofs/cpfg3.0.features/-
by a specification of all arrays used in the model: arrays

define:{ arrayname1[Nl,l]...[Nl,Dl] = {U[O]...[O][O],U[O]...[l], ""U[Nl,l—l]---[Nl,Dl—l]}7

namen[Np1]--.[Nn,p,]; }
The command can be placed anywhere before the list of productions. A single ar-
ray is specified by its nameame; and sizesV; ;...N; p, for each ofD; array di-
mensions. The array can be initialized by including a list of all array values be-
tween a single pair of curly brackets. The fifst p, values initialize array items
name;[0]...[0][0], ... , name;[0]...[0][N;, p; — 1], nextN; p, values initialize array items
name;[0]...[1][0], ... ,name;[0]...[1][N; p, — 1], and so on. Several arrays can be de-
fined, with each specification separated by a comma and the last one terminated by a
semicolon. The specification can extend over several lines.
In the following example, three one-dimensional arrays are defined and the first
two are immediately initialized.
define:{ arrayGrowthRate[5] = {1,0.8,0.7,0.6,0.5},
BranchingAngle[4] = {60, 55, 55,50},
ReceivedNutrients[5]; }

6.1.5 Predefined functions

The following predefined functions can be included in L-system expressions:

sin (a), cos (a), tan («a) standard trigonometric functions. Arguments in
degrees.

asin (z), acos (x), atan (z), atan2 (z,y) standardinverse trigopnometricfunc-
tions. Functionsasin andatan return value of an angle betweerd0° and
+90°. Functionacos returns a value betwedl? and90°. Functionatan2
returns arctangent of/ z in the range-90° to +90°.

19

exp (z), log (z), sqrt (z), fabs (x), z"y other standard functions.
floor (z), ceil (x), trunc (z) rounding functions.
sign (z) returns O forx = 0, 1 for positivez, and -1 for negative values of

srand (seed) initializes a random number generator used in all four following func-
tions.

ran (z) generates floating point values uniformly distributed in intetQak).

nran (mean,o) generates random numbers with normal distribution with meedr. hofs/cpfg3.0.features/-
and standard deviation random

bran («a,3) returns random values with beta distribution.

biran (n,p) generates random values with binomial distribution — how many out
of n numbers are below;

stop (n) stopsanimation. When the parametés equal to 1 an&kun or Forever hofs/environment/-
is selected from the menapfg only draws the current string and continues thehiba/twacompeting
simulation. Otherwise, the simulation is stopped.

printt (” format string”,vary,vars,...) prints variables to standard output. All
variables are of typ#oat, thus the format string should contain ofityf or %g.

fopen (” file name”,”type”) opens a file specified by its name for inptijfe =
r) or output {ype = w). The function returns an index of the file, used in the
functions below.

fclose (file) closes the filefile.

fscanf (file,” format string”,&vary,&vars,...) allows to input data from an hofs/cpfg3.0.features/-
external file specified by file indefile. file.input.Rootmap

fprintf (file,” format string”,var;,vars,...) outputs specified variables into
the file file, using the format string. As in the case of functipmntf , the hofs/environment/-
string should contain onl$ f or %g. MonteCarlo/test.runs

fflush (file) flushes the buffers associated with the file.

6.1.6 Sub L-systems

It is often convenient to apply concepts of structural programming to L-system models
and to divide bigger structures into independent parts. This allows the modeler to
first describe the development of some parts of the plant, and then combine the pieces
together in the complete model. Thus the design of a model is more efficient and it
is possible to reuse productions simulating the growth of certain plant organs in other
models.

20

axiom

applying
main L-system
EEYCH I
applying applying |/ applying
main L-sys, Sub L-system id; [/ main L-system

$(id;) ...$(1)... $...%...9(d,05)...$...
applying applying main \\ sub main sub main
main L-system,//Sub L-system id,| | L—sys.\\L=8Ys. id\\ L—system | [L=SyS. id)\ L-sys.

Figure 1: Example of a developmental sequence generated by an L-system with two
sub L-systems

To this purpose, Hanan, in his thesis [1], extended parametric L-systems to include
multiple sets of productions. The framework consists ofaan L-system, controlling
the development of the overall structure, and additional sets of productiohd,-
systemswhich are invoked from the main L-system or from each other in a manner
similar to calling subroutines in a program. Unlike subroutines, no values are returned
to the main L-system upon a completion of a sub L-system.
In the cpfg language, the main L-system is the first set of productions in the L-
system file. Each set of productions has assigned to it a unique index using command
Lsystenon the first line of the specification of the main L-system (index 1) or a sub
L-system. During the application of productions, mod#{&l) switches the control
to an L-system with indexd, i.e. all following modules are replaced by productions
from this L-system. An optional second parameter can specify the scale applied to
all geometry produced by the L-system with index Module$ without parameters
returns the control to the original (parent) L-system (see Figure 1).
In the following example, productions for development of the main axis and devwalfs/cpfg3.0.features/-
opment of lateral branches are separated. subLsystems
L-system 1

Lsystem: 1 /* Main L-system simulating growth of the main axis */

w: A(2,1)

pr1: A(l,0) = 'F(1) [&(86)?(2, Ry)B(1)?]/(95) [&(86)?(2, Ry)B(1)?]/(95)
[&(86)2(2, Ry) B(1)?]/(95) [&(86)2(2, Ry) B(1)?]/(95)
A(l* Ri,04+1) : 6—0

pi2: A(,0): 0>1 = F(1) [&(86)?(2, Ry)B(1)?]/(129) [&(86)?(2, Ry) B(1)?)]
/(129)[&(86)?(2, Ry) B(1)?]/(129) A(l * R1,0+1) : o

endLsystem

21

Lsystem: 2 /* Sub L-system simulating growth of branches */

w: B(1)

p21: B(l) = F() [+B(l * Rs)][-B(l * R2)] : 0.7

P22 B(l) =1+ (10)F(1)/(180)B(l * R2) : 0.3

endLsystem
Each branch ape® introduced in the main L-system by productigns, or p; » is
enclosed by module3 and$ (presented in bold to make them more visible). In the
next simulation step, the modWlé2, R;), inserted just before the apéx switches the
control to the sub L-system and sets the scalinffoThus the module is replaced
by applying either productiop,,; or p2 ». The symbol behind moduleB returns the
control to the main L-system. In the subsequent steps, all modules of the lateral branch,
enclosed between modulg&sare processed using productions of the sub L-system.

The axiomw of the sub L-system does not affect the simulation, but it is useful

when the sub L-system is being developed and tested (without the main L-system).

6.1.7 Homomorphism

An L-system homomorphism is defined as a set of productions applied only for inter-
pretation purposes. This allows the modeler to change the details of the appeanafsiepfg3.0.features/-
without modifying the underlying logic of the model (captured by L-system produsmomorphism
tions).
In cpfg , an L-system homomorphism is specified by productions that are placed
at the end of an L-system between keywondsnomorphism andendlsystem
During the interpretation of the L-system generated string, a matching homomorphism
production is selected for each module in the string. The homomorphism image of a
module is then defined by the successor of the matching homomorphism production.
If there is no matching production, the homomorphism image of this module is the
module itself. Productions with parameters or local programming statements operate
similarly as L-system productionie. the values of formal parameters in expressions
are replaced by the real values of the module’s parameters.
The resulting overall structure of an L-system with homomorphism is shown below:

Isystem: label

derivation length: d

ignore: symbols

axiom: axiom

Icontext< predecessor rcontext: {a } C{

8} successor
Icontext< predecessor rcontext: {a } C{ 3}
8}

>
--> successor

Icontext< predecessor rcontext: {« } C{ 8 }--> successor
homomorphism [: [no] warnings]

seed: s

maximum depth: d

Icontext< predecessor rcontext: {« } C{ 8} --> successor

22

Icontext< predecessor rcontext: {« } C{ 8} --> successor

Icontext< predecessor rcontext: {« } C{ 8} --> successor
endlsystem

It is possible to repeatedly apply the homomorphism productions to the resultiafs/cpfg3.4.exam-
homomorphism image of a module. To enable this operation, the keywaxdnum ples’/homomorphism/-
depth should follow the keywordhomomorphism . The valued then specifies the recursive
maximum depth of application of homomorphism productions (to avoid an infinite
recursion).

A warning is issued if the maximum depth is reached and it is possible to furthefs/cpfg3.4.exam-
apply the homomorphism productions (only in version 3.4 and higher). This wales/homomorphism/-
ing can be avoided by specifying an optional keywood warnings following the recursive
keywordhomomorphism :

homomorphism: no warnings
which is equivalent to:
homomorphism

(kept for backward compatibility). It is possible to use only the keywsadnings
to specify that the warnings are switched on:

homomorphism: warnings

A context for a homomorphism production is defined as the context of the module
in the L-system string, to which the homomorphism is appliedthe homomorphism
image of the modules on the left and right will not affect the context search. In the
following example the context of productidn is used to draw only branches whoséofs/cpfg3.4.exam-

end point hag coordinate less than 3: ples/homomorphism/-
L-system 2 context
w: A1)

p1: A(o)o<6 — [+(20)F7?P(0,0)A(0+ 1)][—(20)F7P(0,0)A(0 + 1)]
homomorphism
hi: F >?P(z,y) :y>3 = f
Even if the homomorphism productions in the previous example were:
homomorphism
maximum depth: 2
hi: F — G?P(0,0)
ha: G >?P(z,y) :y>3 = f
The context for the productidin, would be the modul@P in the L-system string (with
the properly set parameters) and not the mo@iléntroduced by the homomorphism
productionh; .
The use of random values in a homomorphism is not recommended during an an-
imation of the plant development, because the values used in one simulation step are

23

different from values used in another step and visible discontinuities may result. The
resulting structure may change after each redraw, for example during rotations or win-
dow expose events. To prevent this from happening, it is possible to use a separate
random number generator used only by the homomoprhims productions. This option
is switched on by specifying the seed for this generator, using a keyseedt fol-

lowing either the keyworthomomorphism or the keywordnaximum depth .

If sub L-systems are also used, each sub L-system has its own homomorphism,
which has to be specified at the end of the sub L-system.

ADD: It would be nice to have a global homomorphism that would be shared by the
main L-systems and all sub L-systems (not implemented yet).

If a homomorphism production is specified with the delimite* (an object pro- hofs/cpfg3.4.exam-
duction) instead of-> , the operation of such a production is similar to the operatiptes/homomorphism/-
of a production with delimiter-> . During outputting the geometry to a rayshadeyshade.instancing
file the object productions specify objects which should be instantiated. It is possible
to specify (using the view file commamdyshade objects) a format string for
module’s parameters that controls the precision used for differentiating between two
objects created by the same modules with the same number of parameters. It is also
possible to control whether even the turtle is considered when comparing two objects
created by the same module with the same parameters (if the objects are different the
second one is not an instantiation of the first one).

Note that the homomorphism productions are applied also during the environmen-
tal step to be able to properly determine the turtle parameters to be sent to the environ-
mental program (with communication modul£) and to set the parameters of query
modules?P, 7H, 7L, and?U (see Section 6.1.9). Consequently, if you use a homo-
morphism production that is applied to one of the module the module will not be
sent to the environment. Similarly, a homomorphism production With?H, 7L, or
?U in the predecessor will cause that the values of the parameters of this module will
not be set. For example, if there was an additional production

hs: 7P(z,y) — @O
in the example above, the parameter§ Bfwould stay 0 and all branches would be
drawn.

6.1.8 Decomposition

Decomposition productions make it possible to decompose a module in the string into
several components. Thus the L-system productions can focus only on the develop-
ment of main building blocks of a plant, such as an apex, meristem, or leaf. After
each simulation step, before the string is interpreted (and a possible homomorphism is
applied), modules representing these organs can be replaced by several other modules,
representing parts of the organs. Unlike for homomorphism productions, the result of
decomposition stays in the string.
Decomposition productions have to be specified after L-system productionstasfd/cpfg3.4.exam-
ples/decomposition

24

before homomorphism productions (or at the end of an L-system if no homomorphism
productions are included).

Isystem: label
derivation length: d
ignore: symbols

axiom: axiom

Icontext< predecessor rcontext: {a } C{ 3} --> successor
Icontext< predecessor rcontext: {« } C{ 8} --> successor
Icontext< predecessor rcontext: {a } C{ 3} --> successor

decomposition
maximum depth: d
Icontext< predecessor rcontext: {« } C{ 8} --> successor

Icontext< predecessor rcontext: {a } C{ 3} --> successor

homomorphism

seed: s

maximum depth: d

Icontext< predecessor rcontext: {a } C{ 3} --> successor

Icontext< predecessor rcontext: {a } C{ 3} --> successor
endlsystem

The syntax of decomposition productions is similar to homomorphism productions,
in that there are decomposition productions specific for each sub L-system and the user
can specify the maximum depth or whether warnings about reaching the maximum
depth are printed (the only difference is that the productions with deliraterhave
no special effect on the rayshade output). The comnsaedl cannot be included
at the beginning of decomposition, decomposition productions use the same random
number generator as the L-system productions.

6.1.9 Interpreted symbols

During the visualization, the string of symbols is parsed from left to right and every
time a special symbol controlling the turtle is encountered the function associated with
the symbol is performed. Symbols with predefined interpretations are listed below.

Symbols with no parameters use default values specified at the beginning of the
simulation. If a symbol has more parameters than those specified below, the additional
parameters are ignored.

Changing position and drawing

25

<™= _H
+ |- 7
0

Figure 2: Controlling the turtle in three dimensions

F(d) Move forward a step of lengtiiand draw a line segment from the original po-
sition to the new position of the turtle. If the polygon flag is on (see the symbols
{ and}), the final position is recorded as a vertex of the current polygon. If no
parameter is given, the default step size 1 is used.

f(d) Move forward a step of lengtti without drawing a line. If the polygon flag
is on, the final position is recorded as a vertex of the current polygon. If no
parameter is given, the default step size 1 is used.

G(d) Move forward a step of lengtth and draw a line. If no parameter is given, the
default step size 1 is used.

g(d) Move forward a step of lengthl without drawing a line. If no parameter is
given, the default step size 1 is used.

@M(z,y, z) sets the turtle position tax, y, z).

The global parametédine style specifies whether the line is drawn as a line, poly-
gon, or a cylinder.

Turtle rotations
The turtle can be rotated only around its heading, left, or, up vector (Figure 2):

+(#) Turn left by angled° around thdJ axis.
—(#) Turn right by angl@® around thdJ axis.
&(#) Pitch down by anglé° around thel. axis.
A(#) Pitch up by angl@° around thel, axis.
\(#) Rollleft by angled® around thef axis.
/(6) Roll right by angled° around theH axis.

26

| Turn around 80° around thd/ axis. Thisis equivalentt®(180) or-(180)
It does not roll or pitch the turtle.

@v Roll the turtle around thél axis so thatd andU lie in a common vertical
plane withU closest to up.

@Rz, hy, hz,Juz,uz,uz]) Set the turtle heading tohz, hy, hz) (if the vector is
not normalized the program will automatically do it). If only the first threleofs/environment/-
parameters are specified, the turtle up and left vectors are adjusted minimilg2d.no.avoiding/-
their rotation with respect to their previous orientation. Otherwise the nerimation
three parameters specify the turtle up vector (also this vector does not have
to be normalized). In this case, the left vector is computed directly from the
specified heading and up vectors.

Modules@u and@R adjust the turtle orientation with respect to absolute coordinates
(as compared to other rotations, performed with respect to the current turtle orienta-
tion).

If no parameter is given for the symbais- , & A, \, and/ , the value of the view
file parameteangle increment (see Section 6.2) is used.

Changing turtle parameters
The following symbols change turtle parameters:

:(n) Increase the value of the current color index or material index by dhar
increment , or set ton if a parameter is given.

,(n) Decrease the value of the current color index or material bgtha in-
crement , or set ton if a parameter is given.

@;(n) Increase the value of the current color index or material index of the back $idés/cpfg3.0.features/-
of a surface by the second parameter of comnzahak increment (inthe interpretation/-
view file), or set ton if a parameter is given. Surfaces can have different colatsublesides.surfaces
or materials specified for each side only if the view file commiuitghl
color has two parameters.

@,(n) Decrease the value of the current color index or material of the back side of a
surface by theolor increment , Or set ton if a parameter is given.

#(n) Increase the value of the current line width by the global paranieter
width increment | or set ton if a parameter is given.

I(n) Decrease the value of the current line width by the global paranfiiater
width increment | or set ton if a parameter is given.

@Tx(@ndex) Sets texture with indexndex (the order of the texture specification irhofs/cpfg3.0.features/-
the view file). Index 0 switches off texturing. If a predefined bicubic surfaggerpretation/textures
has associated a texture index in the view file, its texture is fixed and cannot be
changed by modul@T'z.

27

@D(scale) Sets the current turtle scale toale. All subsequent geometry will be
scaled by the specified value. The default value is set by the view file command
initial scale

@Di(factor) Multiplies the current turtle scale bfuctor. If no parameter is speci-
fied the default value, set by the view file commaiedle multiplier ,is
used.

@Dd(factor) Divides the current turtle scale bfuctor. If no parameter is speci-
fied the default value, set by the view file commaiedle multiplier ,is
used.

Modeling of structures with branches (Figure 3)
[Push the current state of the turtle (all its parameters) onto a pushdown stack.
] Pop a state from the stack and make it the current state of the turtle.

% The symboPacuts the remainder of a branch. Whenever it is detected in thafs/cpfg3.0.features/-
string during the generation process, it and all following symbols up to the module
closest unmatched right bracRetre ignored for derivation purposes, and will
therefore disappear from the generated string. If an unmatched right bracket
is not found, symbols are ignored until the end of the string. The symbols is
ignored, if itis introduced by a homomorphism production.

%(par) Supports fragmentation. If the symHalis found on the right side of any L- hoofs/cpfg3.0fea-
system production, a special interpretation step is performed after each genenat®/fragmentation
step (if also the environmental pass is performed, these two passes are done
together).

When the module is encountered during this pass, the following substring (up to
the closing ']’ at the same level or up to the né{par)) is moved to the end

of the L-system string and it is preceded by a synf3¢bar, turtle_index),
whereturtle_index points to a special array of turtles. This array stores the
turtle parameters as they were when the motii(jear) was encountered. After

the substring is moved to the end of the L-system string, every time a module
%(par, turtle_index) is encountered in the following interpretation steps, the
turtle parameters are set to the values stored in the array of turtles under index
turtle_index.

The context searches are not passing over this module (if the parameter is
present). Be careful when defining sub L-systems, because if the nfoguie)
appears within a set §fid) and$ (see below) the result after the cut is unde-
fined. A production with(par) as a predecessor will prevent the moving of
the substring. The value of parameter can be arbitrary.

@mc(flag) Conditional cut. Operates as the modWegwith no parameter) only if hofs/cpfg3.0.features/-
the value offlag is equal to 1. Otherwise, it has no effect. cutmodule/condition-
al_cut

28

F[+F|[-F|-F|F|F[+F][-F]

Figure 3: Turtle interpretation of a bracketed string

Symbols used to create polygons along with and f

{ Start a new polygon by pushing the current turtle position onto the polydwis/cpfg3.0.features/-
stack and set the polygon flag on. See also modl(ttgpe) in the section on interpretation/-
generalized cylinders (below). polygons

} Pop a polygon from the stack and render it. If no more polygons are on the
stack, turn the polygon flag off. See also modb{eype) in the section on
generalized cylinders (below).

Place the current state of the turtle on the polygon stack if the polygon flag is
on.

Drawing circles and spheres

@o(d) Draw a circle of diameted in the plane of the screen. If no parameter is given,
the current line width will be used.

@c(d) Draw a circle of diameted in the HL plane. If no parameter is given, the
current line width will be used.

@O) Draw a sphere of diametdr If no parameter is given, the current line width
will be used. The spheres produced can be shaded even in the colormap mode,
since a set of polygons approximating a sphere is generated using code from
the widely availablesphere.c file by Jon Leechléech@cs.unc.edu).

Drawing parametric bicubic surfaces

~ Draw the predefined surface identified by the symbolimmediately following thafs/cpfg3.0.features
~ at the turtle’s current location and orientation. The control points, geometry
and neighborhood information for surfaces are read from surface specification
files at the beginning of the simulation.

29

@PS{,basig Initializes the four rows and columns of control points for an L-systehofs/cpfg3.0.features/-
defined surfaceéto (0, 0,0). The optional parametdasisspecifies the type of interpretation/Lsys.-
patch as: defined.surf.textured

1. Bézier,
2. B-spline,
3. Cardinal spline.

If no basis is given, the defaultier, is used.

@PC{,r,c) Assigns the current position of the turtle to the control point of the L-
system defined surfagen row r and columre.

@PD(,s,f) Draws the surface defined by the control points of surfacgings lines
along the rows andlines along the columns.

Drawing generalized cylinders

@Gs Start a generalized cylinder in the current turtle position. Equivalef(tto hofs/cpfg3.0.features/-
followed by '’ (see below). interpretation/-

encylinders
{(type) Start a generalized cylinder. The parameter type is one of the following: gency

1 an open curve consisting of Hermite spline segments (as in the case of
@G}

2 a closed curve consisting of Hermite spline segments;

3 an open curve consisting of B-spline segments;

4 a closed curve consisting of B-spline segments.

If the parametetype is 0 or is not specified, the points between a pair of curly
brackets{ and} specify a polygon (see above). The module does not specify
the first control point.

@Gc(strips) Specifies a control point on the central line of the generalized cylinder.
The value ofstrips specifies how many mesh strips are drawn between the
control point and the previous one. The more strips are drawn, the smoother
the generalized cylinder looks. If no parameter is given, one strip is drawn.
Equivalent to.(strips) (see below).

.(strips) Equivalentto @Ga{trips), only it can be used also for specifying vertices
of a polygon (see the Secti@ymbols used to create polygonabove). If the
generalized cylinder is started using symiph control point is also defined
after eachf or F' (the same way as in the case of polygons — the number of
strips is then set to the default value of 4).

@Gegtrips) End a generalized cylinder. The parametetips controls the number
of strips as for symba®Gc

30

}(type) Finishes a generalized cylinder started by a mod(epe,) The parameter
type has to match the value 6fpe;. If a new generalized cylinder is started be-
fore an old one is finished, the result is undefined (unless itis defined in a branch
delimited by square brackeesg. {(1)f(1)[{(3)f(1) }(3)] }(2)).

@Gt(start,end) Multiplicative parameter for the length of tangents of a Hermiteofs/cpfg3.0.features/-
curve that specify the axis of the generalized cylinder between two consaterpretation/-
tive control points. The tangent lengths are equal to the distance betweemyémeylinders/-
two control points multiplied by the tangent coefficients (the default valuetésgents
1.2).

@Gr(ngley,lengthy, angles,lengths) Specifies the slope and length of two tanhofs/cpfg3.0.features/-
gents of a Hermite curve which describes the change of radius of a generaligedpretation/-
cylinder. The command defines the angle of the tangent and its length for a gegeylinders/radii
ment finishing at the next specified control point and for the following segment
starting at the same point.

The angle is defined with respect to the axis of a straight segment of a unit
length, thus the real slope of the radius may not correspond to the set value
for curved segment or segment of a different length (the second problem can
be avoided by using modul@Gr(1)). In addition if you increase the length

of the tangents of the axis too much (by mod@e5) the strips close to the
control points will be wider that the strip in the middle and the angle of radius
tangents will be skewed as well.

As a default or when both lengths are equal to 0, the radius at the control points
is set so that it is linearly interpolated along the segment (if only one length is
set to 0, the tangent at the point is set as if the radius was interpolated linearly).

@Gr(flag) Switches onflag=1) or off (flag=0) an automatic adjustment of radius
tangents for segments of a non-unit length. If the flag is 1, the tangents are
defined for a segment of a unit length and then stretched onto the segment of
a non-unit length, thus the specified tangent angles do not correspond to the
real angles of the tangents. As a default, tangents are not adjusted after the
stretching.

@#(contour_id) Sets the contour specified byntour_id as the current contour for hofs/cpfg3.0.features/-
generalized cylinders. Contours are specified in the view file (see the comniatedpretation/-
contour in Section 6.2). A contour witld 0 is the default circle. Unlike gencylinders/-
in case of textures or tropisms, contadiis specified in the view file for eachcontours
contour separately and it does not depend on the order of commamtasir

@!(polygons) Sets the number of polygons around a generalized cylinder or a cylin-
der that is represented Wy or G.

Changing tropisms parameters

31

@Ts(ndex,value) Set elasticity parameter of tropism with indéxdex to value. hofs/cpfg3.0.features/-
Index is given by the order of the tropism specification in the view file (startimgerpretation/-
with 1). tropisms

@Td@ndex[,value]) Decrease the elasticity parameter by the default elasticity incre-
ment specified in the view file or by the given valudue.

@Ti(index[,value]) Increase the elasticity parameter by the default elasticity incre-
ment specified in the view file or by the given valudue.

@Tp Preventtwist. This command adjusts the turtle’s up and left vector to minimize
the twist [3]. This command operates locallg. it adjusts the turtle’s vectors
only at the current point.

@Tf Force the twist. If the orientation of a segment following symbolsr \ is
adjusted due to a tropism (which as a default adjusts the segment’s up vector
to prevent twist), the effect of the symbdlsor \ is nullified. In such cases it
is necessary to add the syml@ITfto force the twist. This command operates
localy,i.e. it prevents twist only for symbols or \ to the left of @ TT.

Symbols for Sub-L-systems

?(d,scal§ Causes the generator to save a reference to the current L-system on alstdisikcpfg3.0.fea-
and to use the list of productions from the sub-L-system identifieid loyring tures/subL-systems
subsequent production matching and application. During interpretation, the
current scale is saved on a stack and the structure resulting from interpretation
of the generated substring is scaledsogle

$ End the sub-L-system and return to the previous set of productions and scale.

Query and communication symbols

?P@,y[,z]) queries the current turtle position. If the module is present in any hefs/cpfg3.0.fea-
system production, an interpretation step is performed after each generatetstes/querymodule
when productions are applied. The string is thus interpreted ewpifigf does
not draw to the window. During the interpretation, the two or three parameters
of the module are set to the y, or z, y, andz coordinates of the current turtle
position, respectively. These parameters then can be accessed in the follow-
ing generate step and affect the selection of productions (see the definition of
environmentally-sensitive L-systems in [6]).

?H(z,y[, z]) queries the current turtle heading vector (similarly?B3.
?L(z,y[,2]) queries the current turtle left vector (similarly 28).

?U(z,y[,2]) queriesthe current turtle up vector (similarly®).

32

?E@,...,z,) module?E (communication module) is used both to send and recetvefs/environment/...
environmental information represented by the values of parameters. , x,,, .
Specifically, parameters,, ..., z,, act as an interface between the plant and
the environment, simulated by an external process. They can be set by the
plant model and transferred to the environment or set by the environment and
transferred to the plant model (see the definition of Open L-systems in [2, 4])

Miscellaneous commands

@L("Label”) Prints the "label” in the drawing window at the current turtle locaiofs/cpfg3.0.fea-
tion using the font specified in the view file. It is also possible to specifytaes/labels
printf-like format string and print out values of subsequent parametegs (

@L("a=%g",a)).

@S("any system call”) Will make the system call when interpreted.

@I("rayshade objecf; scale]) Includes a rayshade objects with a given name, lo-
cated at the current turtle location, and scaled by a given value (only for a
rayshade output). The second parameter is optional.

@J@izer, sizes, sizes) As a default, all objects output into a rayshade file are en-
closed in one grid. To be able to create more grids, tightly enclosing each plant,
for example, the modul@Jcloses the current grid and starts a new grid of a
given size (in number of voxels). This module is interpreted only during the
rayshade output. Usually, a value2if for the longest object dimension is suf-
ficient. The shorter dimensions then can be reduced accordingly (this has to be
done by the user). If the object dimension are not known, valQes 20 x 20
would work.

If a module starting with a lette® is not one of the recognized interpreted mod-
ules, a warning message is issued during the interpretation of the string. An exception
are modules®@Z and @Y, which are used for controlling the tropism elasticities in a
program for interactive editing of L-system generated strings (currently in develop-
ment).

33

6.2 View file

A view file contains drawing, viewing, and rendering parameters as well as the names
of surface specification files for any surfaces to be included in the image. The format
of the view file is given below. All text ilypewriter font , special symbols and
all spaces should be entered as shown. Unless stated otherwise, the symbatsd
z represent floating point numbeig,epresents an integer] represents a single char-
acter, and other text iitalics represent character strings. Comments can be included
using standardC notation: /* ... */ . Many of the parameters in this file have
default values, and can be omitted, but it is good practice to have everything in the file.
This makes it easier to change default values because the appropriate keywords are
already in the file (also, it makes it easier to change parameters with control panels).
Note that the following commands are processed in the order they are specified
in the view file. Thus if there are two commands controlling the same parameter, the
second command takes precedence. This does not apply to commandslglth as
texture , and others that specify a new set of parameters every time the command
occurs.

6.2.1 Setting turtle’s parameters
Line Contents Comments

angle factor: X 360°/z is the angle increment associated with the , &,
\',/ and| symbols.

angle increment: X Set the angle increment associated with-the, & ™, \ ,
/ and| symbols tox. The commandangle increment andangle
factor are alternatives and the last one appearing in the file will be used.

initial color: i1 [ie] number between 0 and 255 specifying the initial value
of the index to the color map or a set of materials. The second number, if
present, specifies the index of the color or material of the back side of the
surface. The prograepfg then considers two different colors/materials for
each surface.

color increment: i1 [i2] number specifying the color or material index incre-
ment associated with theand, for the front index and@; and@, for the
back index.

initial line width: x[| pixels| shaded] the numberrepresentsinitial line

width in the specified line style. If no string is listed after the number, then
Fs andGs are drawn as flat shaded polygons with a width in world units. The
width of line in this case is rescaled when ttjgfg window is resized. If
pixels or justp is listed, flat shaded lines are drawn with their width in
pixels (or screen units). Bhaded or simplys is listed, lines are drawn as
shaded cylinders in world units. In versions 3.0 and higher, line style should

34

be set by commantihe style (see below in Sectiohines, surfaces,
and generalized cylinders.

line width increment: X a number specifying the line width increment as-
sociated with the symboisand! with units taken from the initial line width
specification.

initial scale: X the parametex specifies the initial scale factor associated

with the turtle (the default is 1). All geometry will be scaled by this factor.
This initial value can be modified by modul@D@Di, and@Dd

scale multiplier: x modifies the default value (1) of the multiplicative factor
by which the turtle scale is multiplied or divided, when mod@®ior @Dd
is interpreted.

6.2.2 Setting the view

viewpoint: XY,z x,y,andz coordinates of the view point in world space

view reference point: XY,z z,y, andz coordinates of the view reference
point in world spacé

twist: i tenths of degrees to rotate the image on the screen.

projection: type type identifies the desired projection, eithearallel or
perspective . Perspective viewing mode is the preferred mode to use if
you intend to save a rayshade format object since rayshade also uses perspec-
tive viewing. Auto-centering and auto-scaling work only in parallel mode.

viewing angle: x the viewing angle of perspective projection (the default is
45°). ltis ignored in parallel projection.

front distance: X the distance from the viewer to the front clipping plane in
perspective projection or the position of the clipping plane with respect to the
viewpoint in parallel projection (thus a negative value has to be used). Note
that modifying scale factor (see below) in perspective projection moves the
viewer closer or farther from the view point and the front distance has to be
adjusted.

back distance: x the distance from the viewer to the back clipping plane in
perspective projection or the the position of the clipping plane with respect
to the viewpoint in parallel projection. Note that modifying scale factor (see
below) in perspective projection moves the viewer closer or farther from the
view point and the back distance has to be adjusted.

3As described in the SGI Graphics Library Programming Guide.

35

scale factor: X aparameterindicating the size of the final image on the screen.
A value of 1.0 corresponds to full size. In perspective projection, the scaling
amounts to moving the viewer closer or farther from the view points, which
may require adjustments in front and back distance.

box: x: xmin, xmay: ymin, ymax: zmin, zmax sets a bounding box for the
model. The view is adjusted so the whole bounding box is visible (effective
only in parallel projection).

6.2.3 General drawing parameters
shade mode: i an integer defining the type of rendering to be applied:

1. simplefill,
interpolated fill,
Gouraud shade,
B-spline,

closed B-spline,
two sided,

7. wireframe.

o 0 A~ w DN

This command is kept only for backward compatibility. Weader mode
instead.

render mode: mode wheremodedefines one of the following render modes:

fast similar to modeilled (see below), only spheres and disks are drawn in
wireframe.

wireframe the wireframe of all objects is visualized. If the image is output
to a postscript pairs of neighboring triangles are visualized as a single
polygon to reduce the number of lines.

filled all polygons representing a surface have the same color associated
with the surface. If materials are specified the diffuse color is used.

interpolated similar to moddilled. If the color or material at the beginning
of a straight line or cylinder (using modulés andGs) is different
from the color at the end, the two colors are interpolated along the line.
Similarly, the color of L-system defined polygons is interpolated, if the
colors at different vertices are different.

flat in this mode, the color of each polygon representing surfaces, lines,
or generalized cylinders is determined according to the position of the
polygon with respect to the light. If materials are specified, the color is
determined according to the material specification, using a single nor-
mal for the whole polygon. Otherwise, the colormap is used. In the

36

z buffer:

case of cylinders or generalized cylinders, the color of the polygon is
chosen from intervdkol — dif f refl, col + dif f_refl], wherecol is

the color index associated with the surface diflf refl is a range
defined using commandiffuse reflection (see below). The
color is chosen according to the position of the polygon with respect to
the direction towards the first light source (other sources are ignored).
In the case of surfaces and tsurfaces, the color selection is more com-
plicated (see commarsiirface reflection below).

shaded similar to moddflat. If materials are specified, the normal for each
polygon representing a surface can be different at each vertex of the
polygon, resulting in a smooth shading. If colormap is used, a color is
computed for each vertex of the polygon (see the commdiffdise
reflection andsurface diffuse below).

flag a string identifying whether hidden surface elimination (using z
buffer) should be providedf) or not ff).

cue range: X anumber specifying the range of color indices used for depth cue-

font:

ing. A value of 0 indicates no depth cueing. Usual values afe 10 to 100.
Depth cueing is not used in versions 3.0 and higher.

Xfont Xfontspecifies the font type to be usedar. interpretation using the hofs/cpfg3.0.fea-

X font specification. If the font is not found or not specified, the default igres/labels

interpretation past %: flag flagequal toon (default) allows the turtle to

interpret past symbdlowhich in subsequent step cuts a substring. When the
flagis set tooff , the symbols afte¥bare not interpreted.

interpretation step: i an integer value specifies number of interpretechofs/cpfg3.0.features/-

symbols between an X event is checked. The interpretation during rotatioimtarpretation/-
after selectindNew modelNew L-systenNew viewor New Homomorphism interpr.step
from the menu can be interrupted by an X server event. This allows one, for

example, to quit the program before the drawing is finished, to rotate much

quicker — just a part of the string is drawn (depending on the machine speed

and value of), or to reduce the number of redraw events when the window

is resized or exposed several times in a row. Settiog1 switches off this

featurej.e. all modules are interpreted without checking for the next event.

rayshade objects: format [turtle flag] controlsthe output of instantiatedofs/cpfg3.4.exam-

objects into rayshade file. If you specify a homomorphism production witles/homomorphism/-
delimiter-o> instead of-->, during the rayshade output the predecess@yshade.instancing
will be instantiated if it appears again (if it has the same parameters and

possibly also the same turtle parameters). The format string controls the

precision of object parameters (used for differentiating between two objects

37

created by the same modules with the same number parameters). For exam-
ple, if the format is set t§.2f, the precision of two decimal points is used
in comparisons% f or %g results in the full precision comparisons).

The parameteflag is equal either teonsidered orignored and it controls
whether even the turtle is considered when comparing two objects created by
the same module with the same parameters (if the objects are different the
second one is not an instantiation of the first one).

rayshade scale: scale specifies a scale factor which is applied to the rayshade
objects output bgpfg . This command can be used for scaling up and down
specific plants generated by different L-systems in different scales. Note: it
is usually better to use the parameter turtle scale (see comimiéiat
scale).

6.2.4 Lines, surfaces, and generalized cylinders

line style: style specifies how the lines (represented by modies G) are
drawn. Parametestyleis one of the following:

pixel flat shaded lines are drawn with their width in pixels;
polygon lines are drawn as flat shaded polygons with a width in world
units;
cylinder lines are drawn as cylinders with the width specified in world
units.
tapered lines: flag controls whether lines or cylinders are drawn tapered or

not (flagis equal toon or off — the default ison).

polygonization level: n determines the level of detail used in generating
the polygons for spheres and cylinders. For stems, for example, ti¥relis
polygons around the circumference. A high value, such as 4, will generate
very smooth surfaces, but take longer to display. A lower value, such as 1
— the lowest, produces very rough approximations to these surfaces. If this
line is not specified, the default value is 2. This command is kept only for
backward ompatibility. Useontour sides instead.

contour: ifile defines a contour with integer idspecified by a set of 2d or 3dhofs/cpfg3.0.features/-
control points read from the filile. For more details, see Section 6.4.2. interpretation/-

) encylinders/-
contour sides: n determines the level of detail used in generating the pog’éntours
gons for spheres and cylinders (this initial value can be modified by module
@"). In the case of cylinders; (n > 3) polygons around circumference is
drawn. For spheres, the closest upper power of two is used. If you want
to have smooth connections between cylinders and spheres for small values

of n, use a power of 2. If this command or commaudygonization

38

level: is not specified, the default value is 8. Make sure this command
is not followed by commangolygonization level later in the view
file, because then the parameter could be changed by the second command.

surface: id name.s {sf [tex] the character used to identify the surface, a string
containing the file name of the surface specification file (see Section 6.4.1),
and a surface scaling factor. The parameteris andtex are optional. If
parameters and¢ are included, they specify the level of detail used when
drawing patches. Patches are drawn usimgplygons along the rows and
along the columns. If andt are not specified, they default to 5. Several
surfaces may be specified in this manner.

The last parametetdx), if present, specifies a texture associated with the
surface. This value takes precedence over the texture index associated with
the turtle during the interpretation and all instances of this surfaces will have
the same texture. It is better not to include this parameter and set the texture
inside the L-system. Note that the paramétar can be present even if the
couple of parametersandt is omitted.

line: id name.s x the character used to identify the line to be drawn, a string con-
taining the name of the surface specification file, and a surface scaling factor.

tsurface: id name.ray s the character used to identify the surface, a string cdmfs/cpfg3.0.features/-
taining the name of a file using rayshade-like file format, and a surface sizdkrpretation/-
ing factors. The file should contain a set of triangles with 6 or 8 values psurfaces
vertex, specifying vertex point, vertex normal, and optionally texture coordi-
nates (see Section 6.4.3).

twist of cylinders: flag As a default, generalized cylinders are drawn ihofs/cpfg3.0.features/-
such a way that their twist is minimalized. If the twist is desiredflsefto interpretation/-
on. gencylinders/twist
background scene: list listisalist of file names (separated by a space, comma,

or semicolon). Each file contains a set of OpenGL-like graphics commands
(see Section 6.4.5) which specify additional objects drawn after the L-systefs/cpfg3.0.features/-

generated string is interpreted. interpretation/-
gencylinders/-
6.2.5 Color-map mode: Colors and lights backgroundscene
light direction: xXY,Z z,y,andz coordinates of the vector indicating the di-

rection of light for shading purposes. This command should be used only
if the program is running in the colormap mode. In the material mode, use
commandight

ambient light: red, green, blue the ambient light specified as red, green and
blue components. This command is effective only in version 2.7 and lower.

39

diffuse reflection: i aninteger number indicating the range of colors cho-
sen for lighting a shaded surface (effective only in colormap mode). The
surface colotol is varied within the intervalcol — i, col + i] to achieve a
color variation due to the different orientation of polygons representing the
surface with respect to the direction of the light source (only of the first light
source if more then one source is specified). The color of a polygon repre-
senting a cylinder or generalized cylinder is chosen in the following way. If
col is the color index associated with the cylinders the diffuse refection
coefficient, N is the normal of the polygon, anfl is the direction towards
the light source, the resulting index is:

index =col +i-N - L.

surface ambient: X anumber between 0 and 1 indicating the amount of am-
bient light present for shading bicubic surfaces and tsurfaces. This command
is effective only if the program is running in the colormap mode. In the ma-
terial mode, materials specify ambient light for surfaces. See the following
command for the description of computing the resulting color.

surface diffuse: X anumber between 0 and 1 indicating the amount of dif-
fuse light present for shading bicubic surfaces and tsurfaces. This command
is effective only if the program is running in the colormap mode. In the
material mode, materials specify diffuse light for surfaces. The color of a
polygon representing a surface is chosen in the following wayollfs the
color index associated with the surfaéet is the intensity of the colorift =
(col/64) — floor(col /64)), amb is the predefined ambient intensitl.f f is
the predefined diffuse intensitdi(f f = x), N is the normal of the polygon,
andZ is the direction towards the light source, the resulting index is:

index = 64 - int - (amb + dif f - abs(N - L)).

background color: red, green, blue the background color specified as red, green
and blue components. kpfg version 3.0 and above, this command is ig-
nored. The background color is then either the colormap color with index 0
(in the given set of 256 colors — controlled by the command line parameter
c¢) or the emission color of the material with index 0.

6.2.6 Material mode: Lights and textures

light: subcommand; subcommand, ... sets a light source. The subcommands
are:

O:xyz origin of a point light source (the default light source is a
point source, located at (0,0,1));

Vixyz vector specifying a directional source;

40

Arghb ambient (default 1 1 1);

D:rghb diffuse (default 1 1 1);

S:rghb specular (default 1 1 1);

P.xyzec specified a spotlight with the directidm, y, z), expo-
nente , and cutoff angle (default 0 0 -1 0 180);

T.clq attenuation factors (constant, linear, and quadratic) (default

100).

More than one light can be specified by including several commiggids
into the view file.

texture: subcommand, subcommand, ... defines atexture mapped on surfacémfs/cpfg3.0.features/-
cylinders, conses, and generalized cylinders (not disks and spheres). ifteepretation/-
subcommands are: textures/...

F: image specifies the image file name (a necessary subcommand).
The image width and height is clamped in such a way that the image
size is @™ x 2™).

Currently, it is possible to specify rgb, rle, and tga images (with the
proper extension).

H: filter for textures with texels bigger than image pixels. The pa-
rameterfilter is eitherlinear or near (only ! or n can be used).
When set tdinear texture image is smoothed, while settingitaur
makes the texture pixels visible.

The default isvear.

L: filter for textures with texels smaller than image pixels The pa-
rameterfilter is eitherlinear or near (only ! or n can be used).
When set tolinear more texture pixels are used to compute the
given pixel, while fornear, just one texture pixel is used to com-
pute the given pixel (which may result in aliasing).

It is also possible to use mipmaps in which case the OpenGL library
creates a smaller version of the texture (down to a sizexot) and

for smaller objects uses the smaller texture (resulting in faster dis-
playing). There are four modes of operation when selectin a proper
textel pixel:

mnn take the nearest mipmap image and the nearest pixel in this
mipmap. Produces some artefacts, visible especially when
moving object around or scaling it, but it is the fastest.

min take the nearest mipmap image and the linearly interpolate
between neighboring pixels (still produces some artefacts).

mnl take the nearest pixels in both best choices of pixmaps and
interpolate between the values.

41

mll linearly interpolate between neighboring pixels in both best
choices of pixmaps and interpolate between the values. Pro-
duces the best result, but may be slower.

If just m is used, thenll mode is selected.
The default ishear.

E: mode controlsthe way the texture is combined with the surface cblors
The parametemode is one of the following:

modulate cpfg multiplies the surface color with the texel color;

decal only the texel color is taken and the surface is not
shaded;

blend interpolates between surface and texture color using
the color index value of the surface (only in colormap
mode).

The default isnodulate (only m, d, orb can be specified):.

S: when present, the surface texture is mapped per surface not per
patch. The default is mapping per patch, texture coordinates are
derived froms andt coordinates of the &ier patch representing
the surface (both, andt vary from 0 to 1). In case of mapping per
surface, first the surface boundaries are found and then the texture is
mapped intaz = 0 plane with respect to the computed boundaries.

R: ratio defines the aspect ratio of a texture mapped on cylinders and
generalized cylinders. The defaultis 1. A value greater than 1 will
cause the texture to be more stretched along the cylinder.

More than one texture can be specified by including several comnextdse
into the view file.

6.2.7 Tropisms

tropism direction: XY,Z x,y, andz coordinates of the vector indicating thehofs/cpfg3.0.features/-
direction toward which branches tend to bend. This command is kept dntgrpretation/-
for backward compatibility. Use the commaindpism instead. tropisms

initial elasticity: X a value specifying the susceptibility of a branch to
bending. This command is kept only for backward compatibility. Use the
commandropism instead.

elasticity increment: x the value used to increment or decrement the elas-
ticity associated with thesymbol. This command is kept only for backward
compatibility. Use the commartcopism instead.

4See “The OpenGL Programming Guide”, Chapter 9, Seddodulating and Blending.

42

tropism:

torque:

subcommand, subcommands ... Sets tropism parameters. The sub-
commands are:
T Xy z tropism vector (must be present);

A: ang angle (in degrees) with respect to the tropism vector that seg-
ments are trying to reach (for example, the angl®@f corre-
sponds to diatropism). The defaultds.

I: int intensity (global intensity of the tropism — default is 1);
E: ela initial elasticity (default is 0);
S: step elasticity step (default is 0).
subcommand, subcommand, ... Sets parameters of amovementthat ad-
just rotates segments around their heading without modifying the heading

orientation. The subcommands are the same as for commnapdm
except that subcommard is ignored.

43

6.3 Animation file

An animation file contains parameters controlling frame by frame display of images
for animation purposes.

Line Contents Comments

double buffer: flag specifies whether double bufferingas or off during
animation. The defaultisn. In cpfg version 3.0 and higher, the command
line setting of single- or double-buffering takes precedence, because buffer-
ing has to be set at the point of execution (using command line parameters)
and cannot be changed afterwards. The only effect the comdwrie
buffer has is to set single-buffering even if the program starts with two
buffers.

clear between frames: flag specifies whether screen clearing between frames
ison oroff . The default ion.

scale between frames: flag If the flag ison, the view is adjusted (in paral-
lel projection only) so the whole structure fits into the window (before the
scaling is applied — see commasdale in the view file). The default is
off .

new view between frames: on/off If the flag ison, the view file is reread hofs/environment/-
after each simulation step. Consequently, the view, textures, and all parasoid2d.no.avoiding/-
ters specified in the view file are updated. Used, for example, for updatirapanation
background scene or a texture used for visualizing the environmental field
The default ioff .

swap interval: i minimum time (in tenth of a second) between swapping of
buffers in double buffer mode. The time is measured from the moopgt
begins to draw the frame to the moment it begins to draw the next frame. If
it takes longer to draw a frame, the delay between frames is then longer. The

defaultis 1.

first frame: i derivation step of the L-system string to be interpreted as the
first frame. The defaultis 1.

last frame: i derivation step of the L-system string to be interpreted as the last
frame. The default is the number of derivation steps (specified in the L-
system file).

step: 1 number of derivation steps between drawing (and recording) of frames. It

defaultsto 1.

5The memory allocated bgpfg s (the resident size) increases with each New View. This increase may
be significant in animations in which the new view is invoked after each animation step. See Section 11.

44

frame intervals: framey, frames, from, — toy, froms — tos Step step; ...
Allows the user to select frames or change the step during an animation. The
command is followed by:
e alist of specific frames and/or

e by ranges of frames without specifying the step (thus step of 1 is used)
and/or

e by ranges of frames with given step,

all divided by commas.
Example:
frame intervals: 1, 3-5,8-1tep 2,25

In addition, every time a range is specified, it is possible to change the skafs/cpfg3.0.features/-
ing or rotate the given object by a certain amount after each frame, usitgrpretation/-
commands: animate

rotate rz ry rz rotates by anglez (in degrees) around axis an-
glery around axig/, and angle-z around axis;

scale sz sy sz scales by valuesr, sy, andsz.

There can be only one commanatate or scale present for a single

range.

Examples:

frame intervals: 1-99,100-1500tate 1500

frame intervals: 1-99,100-15@cale 0.90.90.9

If the commandrame intervals is specified in the animation file (re-

gardless the order), it takes precedence over the comnfiestdframe ,
last frame ,andstep .

The command in the file can be in an arbitrary order. The file is not preprocessed,
thus comments may cause problems (at least a warning will be issued).

45

6.4 Other input files
6.4.1 Surface specification file

A surface specification file details a bicubic surface gzr form composed of anhofs/cpfg3.0.features
arbitrary number of patches. The file has the following format, wherg, and z

are real values, is an integer value and the remaining stringgatics represent text

strings.

Tmin Tmaz Ymin Ymaz Zmin Zmaz

CONTACT POINT Xz Y: yZ: z

END POINT X:zY: yZ: z

HEADING X:z Y: yZ: z

UP XizY: yZ: z

SIZE: =z

patchname

TOP COLOR: DIFFUSE: =z

BOTTOM COLORDIFFUSE: y

AL: patchl A: patch2 AR: patch3

L: patch4d R: patchb

BL: patch6 B: patch7 BR: patch8

T11 Y11 211 Z12 Y12 212 T13 Y13 213 T14 Y14 214
T21 Y21 221 T22 Y22 222 T23 Y23 223 T24 Y24 224
T31 Y31 231 T32 Y32 232 T33 Y33 233 L34 Y34 234
Ta1 Y41 241 T42 Y42 242 T43 Y43 243 T44 Y44 244

The first six lines of the file contain information about the surface as a whole. The
first line lists the minimum and maximum values of x, y, and z for the surface. The
next four lines detail geometry parameters required for integrating the surface with
the remainder of the structure generatectpfg . The contact point specifies where
the turtle connects to the surface, the end point is where the turtle is positioned after
drawing the surface, and the heading and up vectors are matched to the corresponding
vectors of the turtle to determine the surface’s orientation. Size is a scaling parameter
giving the size in surface units to be considered as equivalent to the default unit length
associated with thE symbol incpfg .

The above section is followed by groups of ten lines, each describing one compo-
nent patch. As many ten-line groups as there are patches making up the surface are
specified. The first line gives the patch name. The next two lines contain patch-specific
rendering information giving colors and diffuse lighting coefficients for either side of
the surface. If the values are zero, the current turtle parameters are used. The next three
lines contain patch neighborhood information. This information is used when render-
ing to determine if smooth shading is required across a patch boundary. The adjoining
patches are specified by th@atchnamen the appropriate position: above le&lL(),
above f), above right AR, left (L), right (R), below left BL), below B), and below
right (BR. The lack of a neighboring patch in a given direction is indicated By a

46

symbol. The corresponding entries must match in the neighboring patch specification.
The last four lines contain patch control points, each line representing one row of four
points each with aw, y, andz coordinate.

6.4.2 Contour specification file

A contour specification file defines the cross-section (contour) of a generalized chlifis/cpfg3.0.features/-
der. As a default, the contour is a disk. It is possible to use an arbitrary contour defimedpretation/-
as an open or closed three dimensional parametric curve consisting of several B-gmimeylinders/-
segments. contours

The contour curve is specified by a set of control points. Each control point is
defined by two coordinates (in which case the third coordinate is assigned to be 0) or
by three coordinates. The file starts with a single header line:

num_points dimension type

where valuenum _points specifies the number of control points in the file, value
dimension controls the dimension of the contour (2 or 3), and wayge is either
open for open contours atlosed for closed contours.

An example of a contour file follows:

12 3 closed
0.16 -1.12 2.0
0.41 -1.04 1.0
0.58 -0.33 0.5
1.08 -0.04 0.2
1.08 0.49 0.0
0.49 0.54 0.0
0.33 0.91 0.1

-0.37 1.04 0.3

-0.70 0.62 0.2

-1.12 0.16 0.1

-0.87 -0.74 0.3

-0.41 -0.66 1.0

Itis recommended to specify the control points in the counter-clockwise order (with
respect to the point [0,0,0]), because interpolation between clockwise and counter-
clockwise contour results in a twisted generalized cylinder.

Note that ff a contour includes some singulargyy.a sharp edge created by having
three control points at the same location), the normals are not correct.

6.4.3 Tsurface specification file

It is also possible to specify a surface not as a bicubic patch, but by a set of trianplefs/cpfg3.0.features/-
These triangles are input from a text file which follows a syntax of a rayshade iriptérpretation/-
tsurfaces

47

file, except that the only lines that are processed are those with the keyword triangle at
the beginning of the line.

Following this keyword there are 3 lines, each containing 6 numbers, specifying the
x, y, andz coordinates of triangle vertices and the normal in each vertex. Optionally,
additional two numbers, defining andv coordinates of a texture at the vertex can be
included on each line.

Example (without texture coordinates):

triangle

0510 001
0 20 001
0510 001

triangle

0510 001
0 00 001
-0510 001

and with texture coordinates:

triangle

0510 001 050

0O 20 001 1 05
0510 001 051

triangle

0510 001 051
0O 00 001 005
-0510 001 050

6.4.4 Texture image file

Each texture specification (in the view file) includes a file name of an image usedfifs/cpfg3.0.features/-
the texturing. Any of the following format can be used: interpretation/-

¢ RGB — SGI RGB format: textures/...
e RAS — SGI colormap (RAS) format;
e TGA — Truevision Targa format;

¢ RLE — Utah raster toolkit rle format (produced, for example, by rayshade).

The specific format is recognized automatically by the extensigh ¢as, tga, and
rle).

Both the image height and width has to be a power of two. If it is not the case, the
texture image is clamped and only a part of the texture appears on the textured surfaces.
If your texture size does not meet this condition, scale up or down your texture using
commandmscale infile outfile -xres x -y res y

48

6.4.5 Background scene specification file

The background scene can be effectively used for defining additional objects arbofslcpfg3.0.features/-
the simulated plant, such as obstacles. It can be also used during the simulatiortespretation/-
plant-environment interactions, for visualizing the environmental field together wgén.cylinders/-
the plant. backgroundscene
The name of the background scene file is specified in the view file. Often, the
scene is read only at the beginning of the simulation, but it is also possible to update
it automatically before each interpretation step (animate file commamnd view
between frames) or manually (from a menu) for selected steps of the simulation.
Primitives of the background scene are defined in a text file using simple OpenGL-
like statements [8]. The commands can be divided into several groups discussed below.

Primitives

The following statements specify basic geometric primitives similarly as in the
OpenGL graphics library [8]. The coordinates of the vertices or the size of primitives
are defined with respect to a local coordinate system. It is possible to translate the ob-
jects or scale them by translating or scaling the coordinate system using transformation
statements (see below).

polygon 1 y1 21 ... Tn Yn 2, SPecifies a polygon with vertices(zi,y1,21) to
(xn:ynazn) (n > 3).

polygonuv 1 41 21 nxy ny1 N2y ... Tn Yn 2n NETL, MY, N2, SPecifies a polygon with
n vertices(z1,y1,21) 10 (Tn, Yn, 2,) (n > 3). Each vertex has also associated
a normal(nz;, ny;,nz;).

rectangle ab defines a rectangle with one vertex(ih 0,0) and edges of length
a, b along the positive axes, y, respectively.

mesh x; y1 21 ... 2, Yy, 2, SPecifies a rectangular mesh: vertieés2k + 1, 2k + 3,
and2k + 2 define a single rectangle of the mesh= 4 + 2k, k£ > 0).

box abc specifies a box with one vertex {0,0,0) and edges of length, b, andc
along the positive axes, y, andz, respectively.

cone r; ro h specifies a cone with its axis aloggaxis, radius at the base equal
tory, radius at the top equal tg, and heighta.

cylinder r h specifies a cylinder with its axis alongaxis, radiug-, and height
h.

sphere r specifies a sphere with center(@t0,0) and radius-.

Material specification
There is only one statement in this group.

49

material nji ns ... ny; Specifies the current material using 17 values that follow
the keywordmaterial: four values for ambient color (red, green, blue, and al-
pha, allin the range of 0-1), four for diffuse color, four for specular color, four for
emissive color, and one for specular exponent (a value between 0 and 128). The
alpha value controls the opacity of the surface (1 for opaque, 0 for transparent).
This material is applied to all subsequently defined primitives.

Transformations

All primitives are defined with respect to a local coordinate system. The system
can be modified by transformation statements, listed below. The coordinate system is
expressed by a single matrix, specifying the transformation necessary to map the world
coordinate system into the current local system. Thus every rotation, translation, or
scaling modifies only the current transformation matrix. This approach is equivalent to
the use of the modelview matrix in OpenGL [8].

loadidentity sets the current transformation matrix to identitg.(the current
local coordinate system is equal to the world coordinate system).

loadmatrix a as ... a6 Setsthe current matrix. The first four values spec-
ify the first column of the matrix, next four the second columitt,

pushmatrix stores the current transformation matrix on a matrix stack.

popmatrix retrieves a matrix from the stack and sets it as the current transforma-
tion matrix.

translate txtytz translates the local coordinate system by vetterty, ¢z) (by
modifying the current transformation matrix).

rotate angle vx vy vz rotates the coordinate system around vettar vy, vz) by
angle degrees.

scale sx sy sz scales the local coordinate system by factarssy, andsz in axis
x, y, andz.

multmatrix a; as ... a1 Multiplies the current transformation matrix by specified
matrix.

Example
A sample background scene is specified below.

material 0.1 0.1 0.1 1 /* subsequent surfaces are grey */
0.16 0.21 0.27 1 /* with no specular reflections */
0001 /* and no emissive color */
0001

0

50

pushmatrix

translate 3 -20 -3

scale 1 0.7 0.7

sphere 15 [* ellipsoid */
popmatrix

pushmatrix

translate -14 -55.0 8

cone 15 2 14 /* cone */
popmatrix

translate -10 -65 0
box 30 5 30 /* box */

The file is preprocessed lpfg , thus macros or comments can be part of it.

The format of the background scene file is also used in transferring the polygons
representing selected modules from the plant simulator to the model of the environ-
ment. In addition, the same format can be used for the output of the generated struc-
tures from the plant simulator, in which case the file also includes statements specifying
light sources and the projection (Section 7.4).

51

7 Output files

The cpfg menu allows the user to save output files in a number of different formats.
Output file names can be specified on the command line with defaults derived by re-
placing the suffix .| of the L-system file with a different suffixgb , .ras , .tga ,

.rle

,.ray ,.ps, .str ,.strb |, .gls ,.vw ,or.iv depending on the format

chosen. The file name can also be modified interactively through the menu.
The supported output formats are:

RGB — Saves the current window in SGI RGB format. The file name may be
specified on the command line agb file.rgb

RAS — Saves the current window in SGI colormap (RAS) format. The file name
may be specified on the command linews file.ras

TGA — Saves the current window in Truevision Targa format. The file name
may be specified on the command lineag file.tga

RLE — Saves the current window in Utah raster toolkit rle format. The file name
may be specified on the command lineds file.rle

Rayshade — Outputs a complete file in rayshade 4.0 format. The viewing param-
eters produce the same view as cpfg, provided that the perspective view is used.
Surface color is chosen according to the current color map, using the basic color
modified by the ambient light parameter (but not by the diffuse light component).
The file name may be given on the command linerag file.ray

Postscript — Output the generated string in PostScript (see Section 7.2). The file
name may be specified on the command lingpas file.ps

String — Output the generated string in a text format (see Section 7.3). Two
decimal digits of parameter values are output. The file name may be specified on
the command line astr file.str

String (binary) — Output the generated string in a binary format (see Section 7.3).
The file name may be specified on the command linestib file.strb

Graphics Library statements — Output the generated geometry in a local text
format (see Section 7.4). The file name may be specified on the command line
as-gls file.gls

View Volume — Output the computed bounding box into a text file. The file
format is as follows. The file consists of a single line:

box : x: xmin,rmax y: ymin,ymax z : z2mMin, 2ZMax

The file name may be specified on the command linerasfile.vv

52

e Inventor — Output in SGI Inventor format. The file name may be specified on
the command line asv file.iv . This option requires the inventor shared
libraries and for some executables may not be available.

The following sections describe some of the supported output formats in more detail.

7.1 Rayshade output

The prograntpfg allows the user to output the geometry into a rayshade format, mak-
ing it possible to render the generated objects with a high degree of realism. Rayshade
is a public domain ray tracer developed by Craig KolBpfg currently supports
rayshade version 4.0, which is availabl&pt/graphics.stanford.edu/pub/rayshade/rayshade4.0
The manual is also available for download from the same site.
The general structure of a file output bpfg is as follows:

#ifndef NOSURFACES
/* material definitions */
#endif

#ifndef NOHEADERS
[* view settings */

[* screen resolution */
[* background colors */
[* lights */

#endif

#ifdef BBOX

[* defines only the bounding box */

#else

[* predefined surfaces (a set of triangles for each) */
name | grid 20 20 20

[* surface triangles */

end

[* instantiated objects */
name plant.ray grid 20 20 20
[* objects defining the plant */
end

#endif

[* rescale the object using specified values */

#ifndef NOHEADERS
[* define an instance of the object */

53

#endif

This structure allows the user to either use the rayshade file on its own or include it
in a scene comprising several plants. In the second case, the surfaces and the view may
be set by the main rayshade file that includes all plant’s files and the local definitions
can be ignored (by defining the madd®SURFACE®r NOHEADERS Also, only
bounding box can be defined for a fast preview of the scene (using the BBEXY.

The following sections describe each feature of the rayshade file.

7.1.1 Materials

The rayshade file includes definitions of all materials specified in the material file used
by cpfg . Inthe case a colormap is defined, only colors actually usexpfiy objects

are output to the file. In rayshade, the material definition uses keyswofdce(that

is why the macro mentioned above is cal@SURFACES followed by the assigned
name. The name consists of the letter 's’ and the index of the material (or color)
corresponding to the index used tpfg , increased by the index of the main material
set or colormap multiplied by 256 (usually, the colormap index is equal to 1 and all
surface indexes are increased by 256).

If cpfg uses materials, all material components except emissive color are included
in the surface definition. The transparency parameter (only one per surface, not like in
OpenGL where each color can have its own alpha channel) is determined from the
alpha value of the emissive color.

If cpfg uses a colormap, only ambient and diffuse colors are specified, both equal
to ther, g, b color values specified by the colormap.

7.1.2 View parameters and lights

The view and lights set in the rayshade file correspond to the view and lights set by the
cpfg ’'s view file. (The object is rotated and scaled so it is oriented the same way as
on the screen, using a transformation matrix specified together with the instance of the
object at the end of the rayshade file.)

Only perspective projection can be defined in the rayshade file. Consequently, the
parallel projection used bgpfg has to be converted to perspective projection. This
process often produces views which are inconsistent with the view on the scene. For
the best results, it is advisable to use perspective projectiopfm if the plant is to
be output to rayshade.

7.1.3 Bounding box

To be able to preview a scene that consists of a vast number of plants, it is very con-
venient to use only a box representing the bounding box of the plant. Note, that the
bounding box is incorrect, if the rayshade file is output in the off-screen mode, during
which the bounding box is not computed. It is possible, though, to force computing of

54

the bounding box by outputting also the view volume faeg(directly to/dev/nullif
you do not want to keep it, using command line parameters/dev/null).

7.1.4 Predefined surfaces

All predefined surfaces specified in tbefg 's view file are included in the rayshade

file. Each surface is named using the single letter name defined in the view file. The
surface definition consists of a grid of fixed siZ2 (x 20 x 20) containg a set of
triangles. The triangles are defined by their vertices, and possible also normals and
texture parameters at each vertex. The normals are included if the smooth shading
is used bycpfg . Since there are two ways of mapping a texture on a surface, it
may happen that there are two surface definitions in the file (with index 1 and 2 — as
the second letter of the name), each with different texture coordinates associated with
vertices.

7.1.5 Instantiated objects

It is possible to take advantage of instantiation not only for surfaces, but also for parts
of the plant, such as complex leaves or flowers. If the user specifies a homomorphism
production with delimitero> instead of-> , during the rayshade output the prede-
cessor will be instantiated if it appears again (if it has the same parameters and possibly
also the same turtle parameters). The precision of object parameters (used for differ-
entiating between two objects created by the same modules with the same number
parameters) can be controlled by specifying a format string in the view file (using the
commandayshade objects — see Section 6.2). It can be specified whether even
the turtle is considered when comparing two objects created by the same module with
the same parameters (if the objects are different the second one is not an instantiation
of the first one).

Sometimes it may happen that an empty object is defined and rayshade would core
dump on the file. Currently, a tiny transparent sphere is defined in such cases. This
could be better solved by noting which instances are empty and not using them in other
places.

ADD: Itwould be nice to include an example of rayshade instancovg productions)
where turtle’s parameters are considered.

7.1.6 The main object

The name od the main object is generally equal to the name of the rayshade output file
(without the path). The whole object is enclosed in a grid of resolWibi 20 x 20
to speed up the rendering.

Sometimes, thougltpfg may define several plants positioned further away from
each other and it is more efficient to use a separate grid for each plant. For this purpose,
the user can use modu@Jin the L-system string (see Section 6.1.9). The module

55

@J(sizey, sizes, sizeg) closes the current grid and starts a new grid of a given size (in
number of voxels). In this case, there are several objects defined, and the main object is
defined at the end of the rayshade file as a list of the parts specified @Xhedule.

The objects use references to surfaces and instantiated parts, defined earlier in the
rayshade file. In addition, itis possible to define a reference to a rayshade object defined
in another file, by specifying the name of the object as a parameter of the m@dule
(see also Section 6.1.9). In this case, an instance of the object with the given name is
created at the current position, with the orientation given by the turtle, and the scale
specified as the second parameter of mo@le

Before the instance of the main object is defined at the end of the rayshade file (after
the#ifdef NOHEADERStatement), the objectis possibly scaled using the scale param-
eter defined in thepfg s view file (using the comman@yshade scale:). Note,
it is usually better to use the parameter turtle scale (the view file comiméizdi
scale) which affects all primitives and the final scaling is not necessary.

Note that cylinders and cones are defined as a single primitive, thus they always
appear smoothly shaded.

Also, the rayshade format does not support double-sided surfaces, thus if a sur-
face has associated two different materialspfg , in the rayshade file, only the top
material is specified for this surface.

Rayshade reports triangles with edges shorter than 0.00001 as degenerate triangles
and cylinders or cones with length below 0.00001 as degenerate cones. The problem
is that if these primitives are degenerate they are ignored and it may happen that there
will be an object containing no primitives which will cause rayshade to core dump. To
avoid this, make sure, for example, that you are not using generalized cylinders which
starts or finish with width 0.

7.2 Postscript output

Similarly as for the rayshade output, an attempt was made to produce a PostScript file
which is essentially a snapshot of the window. Therefore, the file consists of the L-
system object in a box of the background color, positioned the same way as on the
screen (even in the case the user interactively rotates and scales the object before the
output, regardless the used projection). Care must be taken if standard black and white
output is desired for inclusion in text documents (such agTgX). For this purpose,
the background is generally made white and the foreground black (or shades of grey).
The followingcaveatsapply:

e Textures are not supported.

¢ Primitives are not drawn with interpolating colours,@dg draws them. An
attempt is made to guess the best colour.

e PostScript has no Z-buffer and no additional depth testing is performed during
the output, thus an object located later in the string will overlap another object

56

located earlier in the string even if on the screen it appears behind the earlier
specified object.

Note that if your version ofpfg supports Inventor output, it may be preferable to out-
put your models as Inventor objects, and then print them to PostScript using a facility
such asvprint or SceneViewer .

7.3 L-system string

L-system generated string can be output as a text or binary file. An example of a text
file is:

A(3,0.25)F(3)[+FA(1,0.5)]
-F(4)@0(0.333333)A(2,0.75)

The numbers are output using maximum possible number of digits after the decimal
point (e.9.1/3 is output as 0.333333) unless it is possible to output less diggor
3,0.25tc.).

The binary file starts with a text header:

L-system string: length_in_bytes generation_step_no

followed bylengthin_bytesbytes of the string in internal representation in which mod-
ule parameters are stored as 4-byte floats.
Example:

L-system string: 47 1
A(?222,222?)F(?2?22?)[+FA(222?,2222)]-F(222?) @O (?2?2??)A(?22?2,22??

Tl)\ rrrf)|ITERA\C 0T Wy) It)W U\)R\ 00

7.4 Graphics Library Statements format

The programcpfg can output the geometry in a format, similar to the format of a
background scene (Section 6.4.5). Thus the geometry produced in one simulation can
be included as a background scene in another model. In addition, the GLS format is
used by some environmental prograragy(soilor arvo) to define obstacles.

The output file can include all commands specified in Section 6.4.5 plus the fol-
lowing commands:

Lighting:

clear red green blue this command clears the window and sets the background to
a given color. Usually included at the beginning of the file.

light posx posy posz posw specifies a light source by four homogeneous coordi-
nates of light position. Ibosw is equal to 0 the light is directional. The color of
the light source is always white.

57

Projection:

ortho minx maxx miny maxy front_dist back_dist specifies an orthographic pro-
jection the same way as OpenGL library does.

perspective wviewing-angle front_dist back_dist specifies a perspective pro-
jection the same way as OpenGL library does.

lookat posx posy posz refx refy refz upr upy upz defines the view by speci-
fying the camera position, the view reference point and optionally also the up
vector.

Matrices and transformations:

matrixmode 0/1 sets the current matrix (O for modelview matrix, 1 for projection
matrix).

7.5 Inventor output

Cpfg can output the generated objects into Inventor format, if the executable was com-

piled on the system which has Inventor libraries installed on it. The output consists of a

main file containing the definition of all objects except predefined surfaces, which are

stored in separate files, one file per surface. (Note that sometimes there may be two files

per surface, with two different sets of texture coordinates — see also Section 7.1.4.)
The inventor output has the following features:

e The camera is not defined in the file, thus the initial view in the inventor viewer
(e.g.ivview will not correspond to the view in thepfg window).

e Textures are supported, although Inventor always smoothens the texture image.
Consequently, it is not possible to have a sharp chessboard texture, for example.

e Regardless the used rendering masteaedflat, wireframe etc), the resulting
objects are always smoothly shaded.

e Cpfg generated Inventor files have sometimes too big memory requirements
(possibly related to too many items in a group).

¢ Directional lights do not convert properly to Inventor output (they are defined as
a very distant point source).

¢ If a predefined surface is not included in the view file, the created input file
cannot be viewed (the viewer does not read such a file).

ADD: Specify under what conditions which of the statements appear, assumedly by
reference to the view file parameters. Although curremitfg outputs the viewing
parameters in a single projection matrix.

58

8 Communication with environmental process

8.1 Open L-system$

Open L-systems are a generalization of the concept of query modBlesH, 7L,

and?U used in environmentally-sensitive L-systems [6] (see also Section 6Co#)-
munication modulesf the form?E(x,...,z,,) are used both to send and receive
environmental information represented by the values of parameters., x,,, (Fig-

ure 4). Specifically, parameters, ..., z,, act as an interface between the plant and
the environment. They can be set by the plant model and transferred to the environment
or set by the environment and transferred to the plant model.

This interface is sufficient for receiving the information from the environment, but
the environment also has to obtain information about the position and orientation of
plant organs affecting the environment or being affected by it. Thus in addition to
parameters of a communication module, the environment receives the position and
orientation of the communication module (retrieved from the currentturtle parameters),
and a module following the communication module (with its parameters).

To accommodate the exchange of information between the plant and its environ-
ment each derivation step (after which the interpretation step can be possibly pefformed
is followed by anenvironmental stepin the environmental step, the string resulting
from a derivation step is scanned from left to right to determine the state of the turtle
associated with each symbol. This phase is similar to the graphical interpretation of
the string, except that the results need not be visualized. Upon encountering a com-
munication symbol, the plant process creates and sends a message to the environment
including all or a part of the following information:

¢ the address (position in the string) of the communication module (mandatory field
needed to identify this module when a reply comes from the environment),

¢ values of parameters,

¢ the state of the turtle (coordinates of the position and orientation vector, as well as
some other attributes, such as the current line width),

¢ the type and parameters of the module following the communication module in the
string (moduleB in Figure 4). It is also possible to include the graphical represdrefs/environment/-
tation of this module. Specifically, a set of triangles resulting from the interpretatdonteCarlo/test.runs
of the module (or of its homomorphic image — Section 6.1.7) is transferred to the
environment.

The environment processes the received information and returns the results to the
plant model using messages in the following format:

¢ the address of the target communication module,

6This section is incorporated from [2].
71t would be nice to have an option for having interpretation step both before and after the environmental
step, only before it or only after it.

59

env. step

\

o A@g,.Lay) :?E(xl,...,xm) B(bl,...,bn)'

+turtle -
| environment

e Ay ay) PE(Y Y m) B(by,..by) -

Figure 4: Information flow during the simulation of a plant interacting with the envi-
ronment, implemented using an open L-system

¢ values of parameteig carrying the output from the environment.

The plant process uses the received information to set parameter values in the commu-
nication modules (Figure 4).

Note that by preceding every symbol in the string with a communication module it
is possible to pass complete information about the model to the environment. Usually,
however, only partial information about the state of a plant is needed as input to the
environment, as illustrated in the example below. In addition, the use of addresses
makes it possible to send replies from the environment only to selected communication
modules. Proper placement of communication modules in the model, combined with
careful selection of the information to be exchanged, provide a means for keeping the
amount of transferred information at a manageable level.

You can use the communication modules in homomorphism productions, but only
to send information to the environment. The environment will not be able to respond,
because these modules exists only temporarily during the application of homomor-
phism to a given module. It is fine to use the communication modules in decomposition
productions.

The following simple example illustrates the operation of an open L-system. Tioés/Thesis/5.0pen-
model creates a branching structure consisting of straight line segments. The structyséSierpinski
grows by adding a pair of segments to the end of existing branches unless a branch col-
lides with another one. The occurrence of a collision is determined by the environment.

To accomplish its task, the environment receives the information about the position of
segment’s end points and tests whether two points occupy the same place or not. The
listing of the environmental process can be found in Section 8.4.5.

60

The L-system model is as follows.

L-system 3

w: ?E(0)
pi: 7E(c): c==0 — [+F/(180)?E(0)]F?E(0)

The end point of a segment is represented by a communication maHuleth one
parameter. This parameter is initialized to 0, and if the point collides with another
point, the environment sets it to 1. If the point does not collide, the parameter stays 0.
Productiorp; then creates two new branch segments only for points with parameter 0.
The communication is set up in such a way that with each communication module,
the environment obtains its identification (the address in the string) and its position.
The first few steps of the simulation are described below.
Initialization. The simulation begins with a single polht. Before the first derivation
step, the environmental step is performed and the environment receives the following
information:
address : 0, 7E(0), position : 0,0,0.

It is convenient to think of the address as the number of modules before the communi-
cation module. The position is equivalent to the initial position of the turtle. The point
obviously does not collide with another point, thus the environment does not reply (
sends an empty message) and the parameter of the nmtdsiays 0.

Step 1.The environmental step is followed by a derivation step, in which production
p1 is applied, replacing modulE with the string:

[+F/(180)7E(0)|F7E(0)
which is interpreted for visualization purposes (Figure 5a). Now the environment re-
ceives two modules:

address : 4, ?E(0), position : 0.5, —0.866,0,
address : 7, 7E(0), position : —0.5,—0.866, 0.

These two points do not collide and the environment again does not reply.
Step 2.In the next derivation step, productipn is applied to both module&F result-
ing in the string:

[+F/(180)[+F/(180)? E(0)] F?E(0)] F[+F/(180)? E(0)) F? E(0)

visualized in Figure 5b. In the following environmental step, the environment receives
four modules:

address : 8, 7E(0), position : 0,—1.7321,0,
address : 11, 7E(0), position : 1,—1.7321,0,
address : 18, 7E(0), position : 0,—1.7321,0,
address : 21, ?7E(0), position : —1,—1.7321,0.

61

o
A
vy
A,

Figure 5: Sierpinski triangle generated by open L-system 3in 1, 2, ..., 6, and 32 steps

Since the first and third module occupy the same point, the environment returns a mes-
sage in the form:

address : 8, TE(1),

address : 18, ?7E(1).

The plant simulator receives this message and updates the parameters of the specified
communication modules resulting in the string:

[+F/(180)[+F/(180)? E(1)] F?E(0)]F[+F/(180)? E(1)] F? E(0)

Step 3.In the next derivation step, only the second and fourth modalés replaced
by a pair of branches, resulting in a structure shown in Figure 5c.

The simulation then continues generating a branching structure which is similar to
the Sierpinski gasket (Figure 5g).

The implementation issues related to the incorporation of open L-systems and the
specified communication interface to the plant simulatoig are discussed in the
following section.

8.2 Implementation of the modeling framework

In order to implement the designed modeling framework, the L-system based plant
modeling prograntpfg has been extended by incorporating open L-systems into it

62

Interface
plant-

< . (]

6 | environment | o

M M

M M

e

N .
Pla(rj]t |) | ! Environ-
"Ilg N ¢ A mental data
(L-system) 2 T

|
5 o
N N

PR N
Plant Model of
simulator the environment

Communication
specification

Figure 6: Organization of the software for modeling plants interacting with their en-
vironment. Shaded rectangles indicate components of the modeling framework, clear
rectangles indicate programs and data that must be created by a user specifying a new
model of a plant or environment. Shaded arrows indicate information exchanged in a
standardized format.

and by including a special purpose communication library. The library facilitates the
exchange of information between the plant model and the environmental process. Con-
sequently, the library also has to be included in a program simulating the environment.
The parameters of the communication are definedcimmamunication specification
file, shared between the programs modeling the plant and the environment (Figure 6).
The communication specification file is a text file with commands specifying the name
of the environmental program (with possible options and input files), the format of data
the plant model sends to the environment, and the type of communication between the
programs.
For example, the communication in the example from the previous section (L-
system 3) has been defined using the following specification file;

executable: ulam
turtle position:%.5g %.5¢g
communication type: pipes

The environmental program is calledam (because it was originally used for gener-
ating Ulam’s patterns — see [2]), the data between the two processes are transferred
using a pair of Unix pipes, and only the turtle position is sent together with each com-
munication module (in addition to the module’s address).

The specification of the environmental program is included mainly for the plant
simulator, which controls the communication and executes the environment at the be-
ginning of the simulation.

63

To reduce the amount of transferred data, as a default, only the minimum infor-
mation is transferred from the plant simulator to the environment, namely the address
of the communication module and parameters of the module. All additional informa-
tion, such as the module following the communication module (and its parameters),
the turtle position, orientation, current line widttc. , has to be specified in the com-
munication file (see Section 8.4.1 for the list of all commands). On the other hand, the
environment responds by sending selected communication modules with their address
and parameters.

The communication between the two programs is implemented using mechanisms
provided by the underlying operating system (Unix). Thus the data can be exchanged
using a pair of Unix pipes, a pair of sockets, a pair of files, or shared memory. There are
always two data streams, one for data going from the plant model to the environment
and the other one for data coming back. The variety of communication mechanisms
make it possible to choose one that provides an efficient data transfer between the pro-
cesses (using pipes, sockets, or shared memory) or to choose a slower communication
(using files) allowing the user to access the exchanged data (Section 8.4.6).

In the case of pipes or sockets, the synchronization of communication is straight-
forward: one of the processes waits for the input from the other process on a designated
pipe or a socket and the system suspends its operation during that time. In the case of
files or shared memory, the communication is synchronized using a pair of semaphores
which inform the processes about the availability of data in a shared memory or a des-
ignated file.

The communication follows these steps (Figure 7):

1. Plant simulatocpfg is executed. It reads the communication specification file,
establishes data structures necessary for the communication, starts the environ-
mental process, and waits for the confirmation from the environment.

2. The environmental process reads the communication specification file, connects
itself to data streams, confirms its initialization, and waits for the first transmis-
sion from the plant simulator.

3. The plant simulator starts the simulation and performs an environmental step
to process the communication modules specified in the axiom. The communi-
cation modules are transferred to the environment using the specified streams.
The last communication module in the string is followed by a reserved end-of-
transmission message. The plant simulator then waits for data from the environ-
ment.

4. The environmentrecognizes the beginning of transmission (by being able to read
from a pipe or a socket, or by checking a given semaphore) and starts receiving
the data. After encountering the end-of-transmission message, the environment
processes the queries and starts sending the response back to the plant simulator.
The environment terminates the transmission by a similar end-of-transmission

64

Plant simulator Environmental process

executed
executed
suspended sending confirmation
__| startenv.step:
begin transmission suspended
I
i
sending data receiving data
2

end of transmission

process data
suspended begin transmission

|
v

receiving response sending responses

!

end of transmission

simulation step suspended

....................................

Figure 7: Flow of control during the simulation

message. It then waits again for the plant simulator (returning to the beginning
of step 4§.

5. The plant simulator receives the data coming from the environment and sets the
parameters of communication modules accordingly. After encountering the end-
of-transmission message, it performs a simulation step and returns to step 3.

The simulation is terminated by the plant simulator which sends a special terminate
message to the environment.

If you are using shared memory or files for the data exchange betvpégn and
the environmental program and one of the program crashes, the other one will not be
terminated and you have to do so manually. (You can list all your processespssing
-u your _login _name and Kkill the process bkill process _id . The process
id (PID) is listed byps.) Also, the semaphores and the shared memory stays allocated
and after a while you may not be able to receive more semaphores from the system. In
this case, us@gcs to list all your semaphores and shared memory igodn -m
id oripcrm -s id toremove them.

8The organization of communication, with different channels used to send information to and from the
environment, makes it also possible to send the response immediately — this situation is not captured in
Figure 7.

65

Because of the great variety of environmental phenomena, there is no “universal”
model of the environment. Various phenomena can be modeled by different environ-
mental programs that use a specific representation of the environment suitable for par-
ticular problems.

To be able to communicate with the plant simulator, an environmental program has
to be compiled with the communication library. The library provides a programmer
with a set of functions which have to be called in a given order. Section 8.4.2 provides
a list of functions of the communication library and explains how to use them in an en-
vironmental program. The section also includes the source code for the environmental
program used as an example in Section 8.1.

8.3 Visualization of the environment

Visualization is an essential part of every simulation. It is often useful to visualize not
only the plant model but also the environment (creating one composite scene), in order
to better understand the interaction between them. The plant simegdigprprovides
the user with many useful graphical features [3] making it possible to visualize both
the plant and the environment.

The environment can be visualized in two ways:

1. Asthe background image for the visualized structure. For this purpose, the drfis/environment/-
ronmental process outputs an image file which is used by the plant simulataletasity/Cohen
define a texture on a rectangle representing the background.

2. As a set of primitives, forming background scenehich is displayed together hofs/environment/-
with the generated plant. The primitives are read from a text file containing adwit/3d.no.avoiding/-
of OpenGL-like statements (Section 7.4). tapered

In the case where the environment is static, it is sufficient to read the texture image
or the background scene file once at the beginning of the simulation. In the examples
in this chapter, though, the environment is changing over time, thus it is necessary to
update the image or the background scene every time the environment changes.

Consequently, the background file is periodically updated by the environmental
process and read by the plant simulator after each simulation step, before the visual-
ization. To limit the amount of transferred data, the environmental process can create
the background files only at specific simulation steps. The number of the current sim-
ulation step is sent by the plant simulator together with the message about the end of
transmission (after all communication modules from the string are sent to the environ-
ment — see Section 8.4.4).

8.4 Two process communication
8.4.1 Specification of the communication

The communication between the plant simulatpfg and an environmental pro-
gram is initiated when the simulator is executed with a command line parareeter

66

commspecfile. The communication specification ft@mmespecfile is a text file with
the following commands:

communication type: pipes/sockets/memory/fil&pecifies the type of communica-
tion between the plant simulator and the environmental process. The default
is pipes because pipes provide the most efficient means of communication on a
single machine.

Important note: The standard input streastdinand the standard output stream
stdoutmust not be used in an environmental process, because during the com-
munication, the input and output pipes are connected to these streams.

Inthe case of the file communication, the plant simulator creates twotéléisldXXXX.0
and.from.fieldXXXX.QwhereXXXXis equal tocpfg s process id (as returned
by the system).

The communication through memory or files is synchronized by a pair of Unix
semaphores, which are set automatically by the plant simulator. The size of the
shared memory (in bytes) and communication files (in number of communication
modules) as well as the name of communication files are fixed. These values
do not limit the amount of transferred data, since the communication is done
piecewise. For debugging purposes, it is possible to specify the maximum size
of communication files as a parameter following the keywided

executable:binary [field_ params] Specifies the executable of the environmental pro-
cess and its optional command line parameters.

following module: yes/no Defines whether the module following the communication
module is sent to the environmental process. The defantfis

turtle position: formatstring

turtle heading: formatstring

turtle left: formatstring

turtle up: formatstring

turtle line width: formatstring

turtle scale factor: formatstring
These commands define C-like format strings for those turtle parameters, which
are sent to the environment (currently, only the parameters listed above can be
transferred). Often, only the position and the heading vector are necessary, and
the rest can be omitted. Since the information is being sent in a text format, it
may be desirable to use only a few decimal places or to omit theis when
possible. For example, commands:

turtle position:P:%.3f %.3f
turtle heading:H:%.1f 9%.5f

91n the current version of the progragpfg , the default value iges

67

specify that only the: andy coordinates of the turtle position and heading vector
are transferred to the environment (as floating point numbers with the precision
of 1, 3, or 5 decimal places). Letters in format strings are helpful for debugging
purposes when using files for the communication but they are not mandatory.

interpreted modules: all or M (ny), Mx(ns2), ..., M, (n,) Itis possible to include a hofs/environment/-
set of polygons representing mode(following the communication module MonteCarlo/test.runs
?E) with the data transferred to the environmental process. The moadide
interpreted when:

¢ only the wordall is specified,
e (n;) is not presentand/; = X, or

e M; = X andX hasn; parameters (currently, it is not possible to specify
n; > 6).

If homomorphism or decomposition productions can be applied to the m&dule
(Section 6.1.7), all geometry created by these productions is sent to the environ-
ment.

The geometry is transferred as a set of polygons in a text format (see the output
format of OpenGL-like commands described in Section 7.4).

verbose:on/off Switches on or off the verbose mode, which informs the user about the
details of the communication.

8.4.2 Environmental process

Flow of information

An environmental process communicating with the plant simulator operates as a
slave,i.e. the communication is controlled by the plant simulator (the master). Gen-
erally, the environmental process waits for the data from the plant simulator. The data
consists of a communication module, its address, and possibly turtle parameters or the
module following the communication module. Afterwards, the process sends back the
communication modules with modified parameters and waits for new input in a loop.

There are two possible modes of operation of an environmental process, (Figure 8):

1. immediate answer — the parameters of a communication module obtained from
the plant simulator can be updated immediately, because the results depend on
the local properties of the environment and do not depend on the other communi-
cation modules. This mode of operation is suitable, for example, for simulation
of static environments that are too complex to be expressed in environmentally-
sensitive L-systems.

68

after new simulation step

new module, simulation
step is irrelevant *

| CSBeginTransmission |

AnswerQuery
Input comm. module Input comm. module
CSGetData, CSGetString CSGetData, CSGetString
* Y
Process)
Update environment

1

Output comm. module

CSSendData Output comm. module
CSSendData

| CSEndTransm|SS|0n

Immediate answer Delayed answer

Figure 8: Two possible modes of operation of an environmental process

2. delayed answer — the reply depends on the information obtained from other
communication modules in the string, due to the propagation of information
through the environment. Thus all communication modules from the string have
to be first input (and stored in internal data structures) before the parameters of
the communication modules can be properly set. This mode of operation is usu-
ally used in the case the plant is affecting the environment, because the response
then depends on changes in the environment, introduced by other communication
modules.

The functions used to control the flow of information, to receive the data from the plant
simulator, and to send data back (shown in Figure 8) are discussed below.
8.4.3 Data structures

Let us first overview the data structures used for the data exchange. The information
about selected turtle parameters is received in the struCIIURTLE

struct CTURTLE {
float position[3];

int positionC; /* number of values sent for position */
float heading[3];

int headingC; /* number of values sent for heading */
float left[3];

69

int leftC; /* number of values sent for left */
float up[3];
int upC; /* number of values sent for up */
float line_width;
int line_widthC; /* number of values sent for width */
float scale_factor;
int scale_factorC; /* number of values sent for scale */
h
typedef struct CTURTLE CTURTLE;

It contains selected turtle parameters together with a parameter specifying how many
values have been sent for a given parameter. Thus if a particular turtle parameter is
not received by the environmen it is not listed in the communication specification
file), the corresponding “count” parameter is set to 0. This allows the environmental
process to check whether a required turtle parameter is available (see the examples
below).

StructureCmoduletypeis used to store parameters of the communication module
and the module immediately following it:

#define CMAXPARAMS 20 /* max. number of module parameters */
#define CMAXSYMBOLLEN 4 /* max. length of a module name */
struct module_type {
char symbol[CMAXSYMBOLLEN+1];
int num_params;
struct param_type {
float value;
char set; [* if set=1, the value is sent back */
} params[CMAXPARAMS];

typedef struct module_type Cmodule_type;

The structure consists of the module name (possibly a multisymbol module, such as
@QGs, QGe, QT 'z, etc. — see Section 6.1.9), the number parameters, and an array of
parameter values. Since the same structure is also used to inform the plant model about
modified parameters of the communication module, thed&tgssociated with each
parameter value specifies whether the parameter has been modified by the environment
or not.

Both structure€moduletypeand CTURTLEare defined in the library header file
commlib.h.

8.4.4 Library functions

To facilitate the writing of an environmental process, the following functions are spec-
ified in the communication librarycomn). The first two functions are used in both
modes of operation (Section 8.4.2):

70

void CSinitialize(int *argc, char ***argv)
Initializes the communication and parses necessary options. This call should be
made as the very first operation in the functioain(). The parameters of the
functionC'SInitialize() are pointers to the standard parameters of the function
main(), specifying the number of command line options of the program and an
array storing these options. Since the communication library may add some addi-
tional, internally used options to the command line, the funafi®iinitialize()
parses these options and updates the values of paramejemndargv so that
the user can process the options listed after the commenatable in the com-
munication specification file (see Section 8.4.1).

void CTerminate(void)
Ends the communication — this should be the last call in the functiaim().

If the parameters of a communication module can be modified immediately, the
following function can be used.

void CSMainLoop(int (*Answer) (Cmoduldgype *, CTURTLE *))
The parameter of the functidS M ain Loop() is a mapping functioalnswer().
The mapping function modifies the parameters of the communication module,
stored in a two-dimensional array (pointed to by the first function parameter),
which also includes the module following the communication module. The sec-
ond parameter of the function contains the received turtle parameters.

If the environmental program calls the functi@sMainLoog) with a mapping func-

tion as the parameter, the communication is fully controlled by the communication part
of the modeling system. The functi@SMainLoof) returns when the plant simulator
sends a message to terminate the environmental program. The environmental program
can then clear its local data structures and €dirminaté) (see the first example in
Section 8.4.5).

If the incoming query cannot be answered immediately, the following functions
have to be called in a specific order (see Figure 8 and the code listing below):

int CSBeginTransmissioifvoid)
Starts transmission (of all communication modules in the string generated by
the plant simulator). The process waits for the plant simulator to perform a
simulation step and to send the first communication module. The function always
returns a value of 1.

int CSGetDatgint *master, unsigned long *moduld,
Cmoduletype *twamodules, CTURTLE *turtle)
Obtains a communication module and possibly the following module from the
plant simulator (if the second module is not present, its name is an empty string,
i.e. two_modules[1].symbol[0] is equal to 0). The parametaroduleid spec-
ifies a unique identification number of the communication module, the pointer

71

two_modulespoints to a two-dimensional array containing the communication
module and the next module, and the poirtetie points to the turtle structure
(note that only some turtle parameters are sent, according to the specification
file). The parametemasteris set to the index of the calling master. This value

is used only in a multiprocess environment (Section 8.5) and in the case of a
two-process communication, it is always equal to 0.

The function returns 0 when there is no other module (at the end of the en-
vironmental pass). In this casmoduleid is set to the number of the current
simulation step.

int CSGetString(int *master, char *str, int length)
Reads a stringtr, with maximum lengthength sent by the plant simulator. Ac-
cording to the communication specification file, selected modules can be inter-
preted during an environmental step and the polygons representing the modules
(or theirhomomorphic image) are sent as a set of strings following the communi-
cation module. Thus the functig®&SGetString) is used in a loop after each call
to CSGetDat§) to retrieve these strings. It is recommended to always include
a loop of calls toCSGetStrin{) to receive possible strings from the incoming
data (see examples below), because if the plant simulator sends some strings,
which are not read by the environmental process, the communication would be
interrupted.

The function returns 0 when there is no string coming.

void CSSendDatdint master, unsigned long modul,
Cmoduletype *commmodule)
Sends the modified communication module back to the plant simulator. The
originalmoduleid must be specified. In the case of two-process communication,

the value ofmastershould be 0.

int CSEndTransmissior{void)
Ends a transmission (after all modified communication modules are sent back
to the plant simulator). The function returns 1 when the process is requested to
terminate. In this case, the communication loop should be exited, the process
should free its data structures, and &lerminate()

Instead of calling the library functioBSMainLoo), the user has to define a func-
tion MainLoop(), which should have the following general form.

void MainLoop(void)

{
Cmodule_type two_modules[2];
int master, current_step;
unsigned long module_id;
CTURTLE turtle;
char str[2048];

72

for(;;) {
CSBeginTransmission();
while(CSGetData(&master, &module_id, two_modules, &turtle)) {
StoreQuery(master, module_id, two_modules, &turtle)
/* store all or some of the queries - do not forget
to store values of 'master’ and 'module_id! */

while(CSGetString(&master, str, sizeof(str))) {
ProcessGraphics(master, str);
/* process the graphical representation of the
module following the communication module */

}

DetermineResponse(); /* determine the answers*/

SendBackResponse();
/* send back modified communication modules using
CSSendData(master, module_id, &two_modules[0]); */

if(CSEndTransmission()) break;

}
}

FunctionsStoreQuerf), ProcessGraphid3, DetermineRespon§eandSendBackRespor(3e
have to be defined by the user depending on the data structures chosen for storing and
processing the incoming communication modules. In the case of a two-process com-
munication, the parameterastermay be ignored (and for functiddSSendDaf@ set
to 0). To be able to use the program in a multiprocess environment (see Section 8.5),
the parametemastershould be stored as well.

The second example in the following section illustrates the use of the functions
listed above.

8.4.5 Examples

Two simple examples of an environmental process are presented below. The first ex-
ample illustrates the case when the parameters of the received communication module
can be set immediately, thus the program uses the fun€tg ain Loop().

#include <stdio.h>
#include "comm_lib.h"

int Answer(Cmodule_type *two_modules, CTURTLE *turtle)

{
static float zero[3]={0,0,0};

73

if(turtle->positionC < 3) {
fprintf(stderr,"Turtle position not setl\n");
return O;

}

if(two_modules[0].num_params >= 1) {
two_modules[0].params[0].set = 1; /* parameter modified */
two_modules[0].params[0].value = Distance(turtle.position,zero)

> two_modules[0].params[O].value ? 1 : 0;
}

return 1;

}

void main(int argc, char **argv)
{

CSlnitialize(&argc, &argv);
CSMainLoop(Answer);
CTerminate();

}

The function Answer determines the distance of the turtle position from the point
(0,0,0) and if it is greater than the first parameter of the communication module, the
parameter is set to 1. Otherwise it is set to 0.

The following example illustrates the second mode of operation, when the incom-
ing communication modules (queries) have to be stored before their parameters can be
modified. The environmental program detects whether a communication module col-
lides with another one. The program has been used in the model of Sierpinski’'s gasket
from Section 8.1.

The communication is defined by the following communication specification file.

executable: point_collision
communication type: pipes
turtle position:%.5g %.59

The environmental program is given below.

[**** Environmental process - testing point overlapping ****/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "comm_lib.h"

#define EPSILON 0.001 /* precision of comparisons */

#define MAXQUERIES 1000 /* maximum number of queries */
struct item_type {

74

float position[2];
float query;
unsigned long id;
int master;

} queries]MAXQUERIES]; /* queries */

int num_queries; /* actual number of stored queries */

/

*% *kkkkkkkhkk *kkkkk *% *kkk *kkk *kkkkkk x/

void StoreQuery(int master, unsigned long module_id,

Cmodule_type *comm_symbol, CTURTLE *tu)

{
if(tu->positionC < 2) {
/* do not write to stdout, because it is used for pipes */
fprintf(stderr,"environment: turtle position missing.\n");
return;
}
if(num_queries >= MAXQUERIES) {
fprintf(stderr, "environment: too many queries'\n");
return;
}
queries[num_queries].position[0] = tu->position[0];
queries[num_queries].position[1] = tu->position[1];
queries[num_queries].query = comm_symbol->num_params >= 1;
[* answer only if ?E has one or more parameters */
queries[num_queries].master = master;
queries[num_queries].id = module _id;
num_queries++;
}
/ *% *kkkkkkkhkk *kkkkk *% *kkk *kkk *kkkkkk x/
void DetermineResponse(void)
int i, j;

Cmodule_type comm_symbol;

comm_symbol.num_params =
comm_symbol.params[0].set =

1
1
comm_symbol.params[0].value =

0; /* report only collisions */
for(i=0; i< num_queries; i++) /* for all queries */
if(Queries|il.query) { /* don’t answer if no parameter */

for(j=0; j< num_queries; j++)
if(i1=i)

75

}

}

if(fabs(queries]i].position[0]-queries]j].position[0])
< EPSILON &&
fabs(queriesi].position[1]-queries[j].position[1])
< EPSILON) {
CSSendData(queries[i].master,queriesi].id,
&comm_symbol);
break;

/**/

void MainLoop(void)

{ I* controls the loop of data exchange */
Cmodule_type two_modules[2];

unsigned long module_id;

int master;

CTURTLE turtle;

}

[* infinite loop - until message ’exit’ comes */

for(;;) {

}

CSBeginTransmission();
num_queries = 0;

while(CSGetData(&master,&module_id,two_modules,&turtle))
StoreQuery(master, module_id, two_modules, &turtle);

DetermineResponse();

/* EndTransmission returns 1 when the process is

requested to exit */
if(CSEndTransmission()) break;

/**/

int main(int argc, char **argv)

{

[* initialize the communication as the very first thing */

CSlnitialize(&argc, &argv);
MainLoop();

CTerminate(); /* should be the last function called */

return 1;

76

Each incoming query is stored in a one-dimensional array of a fixed size. To determine
the response for queries with more than one parameter, the coordinates of the query
point are compared with the coordinates of all other points. If there is another point
with the same coordinates, the environmental process sends the value 0 to the plant
model. Otherwise, the parameter of the communication module stays unchanged and
there is no reply by the environment.

8.4.6 Troubleshooting

During the design of a model, it may be necessary to find out whether proper data are
transferred between the environment and the plant simulator. To view the exchanged
data, it is possible to use the file communication and to display the content of files
o fieldXXXX.0and.to_fieldXXXX.0

If the amount of transferred data is too large though, the data are transferred from
one process to the other in several chunks (each stored in a file with the same name).
Thus the user can access only the last chunk of data. The maximum size (in the number
of modules) of the data file is predefined, but it is possible to increase it to a value large
enough so that there is only one communication file used during the data exchange (by
adding a number behind the keywdiie in the specification file).

Often it is also necessary to debug the environmental program. The debugging is
much easier if the program is running in a stand-alone mode, without the plant simu-
lator. To achieve this, it is possible to use the pipe communication and to run only the
environmental program, while inputing the data to the standard input and receiving the
response on the standard output. The input data can also be redirected from a file. This
file can be either created in a text editor or obtained from files exchanged between the
processes during a regular simulation (which uses the file communication).

Running the environmental process in the stand-alone mode then follows these
steps:

1. The simulation is first run with the plant simulator, using the file communication.
Each time the simulation is stopped, it is possible to concatenate the data file
tofieldXXXX.Qthe data sent to the environment in the last data exchange) to a
file to_field, which is of zero length at the beginning of the simulation. It is also
possible to choose the data file from only one simulation step.

2. The user may change the content of the fday(edit some values) or add a
message terminating the environmental process, by including a line containing
the string ‘Control: 8’ to the end of the fileo_field.

3. The environmental process can then be run separately, by setting the communi-
cation type tqpipesand redirecting the fileo_field to the standard input:

environment -e comrapecfile < to_field

The program writes all modified communication modules to the standard output
in a text format.

77

8.5 Distributed system

In a distributed system, several plant models can communicate with different environ-
mental processes and then send the graphical interpretation of the models into a single
drawing window.

Each program in the system has to be compiled with the provided communicatimis/cpfg3.4.exam-
library. Since the programs can be running on different machines, they exchangeptieséDistr.environ
using Unix sockets. The connection to other processes is specified in the command line
of a process, following the switckC:

-C -c,confirm_socket,start_machine;-m:spec_filel,socketl...
...;-s:spec_fileK,socketK,master_machinekK

The single string of switches specifies:

-c the number of a socket and a machine name to which the confirmation about a
successful execution should be sent. After the confirmation, the process monitors
the socket for a possible request to terminate.

-m a master connection. The process operates as a master: it sends data specified
in the communication specification figgecfile1to the defined sockesécket)
and expects the reply on a socket with numémrketl+1 There can be several
master connections.

-s a slave connection. The process acts as a slave: it expects data (defined in the
communication specification filgpecfileK) from a given socket on a specified
machine, processes the incoming data and responds back through a socket with
numbersocketK+1 If there are more slave connections the data from the sockets
are processed in the order given in the command line.

The delimiters in the command string can be characters’, or ;.
The communication specification file contains the same commands as in the case
of two-process communication with following modifications:

e commandexecutablés ignored.

¢ the type of communicatiocdmmunication typds also ignored; it is always set
to sockets

e two new commands have been added:

strings only: on/offthe data exchanged between the processes contain only text
strings. No L-system modules are transferred. This switch is used, for ex-
ample, for transferring a list of primitives from plant models to the drawing
program.

binary data: on/offbinary data can be exchanged between processes. The re-
ceiving process must be aware of the coming binary data, thus often the
data are preceded by a special command string.

The following section lists the functions provided by the communication library.

78

8.5.1 Communication library functions

This sections lists all functions of the communication library, which can be used by
processes communicating with each other in a distributed system.

First, there are three functions used by all processes regardless their role in the
communicationi(e. slave, master, or both):

void Clnitialize (char *programname, char *commansltring)
Initializes the communication. The first parameter specifies the name of the pro-
cess, which is used to distinguish messages from different processes displayed
on the same terminal. The second parameter contains the string following the
switch -C containing the specification of all connections. The format of the
string is described above.

void CSinitialize(int *argc, char ***argv)
An optional function to the previous one. This function retrieves all the necessary
information from the process’ command line. In this case, the switchas to
be the first one on the command line.

void CTerminate(void)
Ends the communication — this should be the last function called.

int CShouldTerminate(void)
This function returns 1 if the process is requested to terminate — when a special
character is sent to the process’ confirmation socket by a control process (see
Section 8.5.2).

A process can operate as a slave, master or both. The latter means that the process
waits for an input from its masters and then can require some data from its slaves.
Communicating with its masters, the process can use functions as in the case of a two-
process communication:

void CSMainLoop(int (*AnswerQuery) (Cmoduléype *, CTURTLE *))
int CSBeginTransmissioffvoid)

int CSEndTransmissior{void)

int CSGetString(int *master, char *str, int length)

int CSGetDatgint *master, unsigned long *moduld,
Cmoduletype *twamodules, CTURTLE *turtle)
This function is generally used only by environmental processes directly com-
municating with the plant simulatocifg).

void CSSendDatdint master, unsigned long moduik,
Cmoduletype *commmodule)
This function is generally used only by environmental processes directly com-
municating with the lant simulatocpfg).

79

In addition there are few new functions:

int CSGetNumberOfMastergvoid)
Returns the number of connections to a master specified on the command line.

int CSSendStrindint master, char *item)
Sends a string to the specified master (with inostej.

int CSSendBinaryDatgint master, char *item, int itensize, int nitems)
Sends a binary data to the specified master. This function is used, for example,
for sending images with a depth information to a drawing program (see Sec-
tion 8.5.3). The function returns 0O if the data have not been sent.

To communicate with its slaves, a process can call functions:

int CMBeginTransmission(void)
Initializes connections to all slave processes for a single data exchange. Cur-
rently, the function always returns 1.

int CMEndTransmission(int current step)
Terminates the data sent by the master in a single data exchange. The parameter
currentstepis used bycpfg to send the number of the current simulation step
to the environment. This number is returned asrtigeluleid parameter of the
functionCSGetDatgsee above). Currently, the function always returns 1.

int CMTerminate (void)
Terminates all slave processes. The function returns 1, if all processes are suc-
cessfully terminated.

int CMGetNumberOfSlavegvoid)
Returns the number of slaves communicating with the process.

int CMSendString(int slave, char *item)
Sends a string to the specified slave.

int CMGetString (int slave, char *str, int length)
Receives a string from the specified slave. Returns 0 if there is no string coming.

int CMSendBinaryData(int slave, char *item, int itensize, int nitems)
Transfers a binary data to a given slave.

int CMGetBinaryData (int slave, char *data, int itensize, int nitems)
Receives a binary data from a given slave. Returns 0 if there is no data coming.

int CMSendCommSymbo(int slave, unsigned long moduid,
Cmoduletype *twamodules, CTURTLE *turtle)

Sends two modules (a communication module with the following module) with

80

their identification number to a given slave. The function returns 1 if the second
module should be graphically interpreted and the resulting set of triangles trans-
ferred to the slave. This function is used mainly by the plant simutgify .

int CMGetCommunicationModule(int slave, unsigned long *moduld,
Cmoduletype *commmodule)
Receives a communication module with its identification number from a speci-
fied slave. The function returns 0, if there are no more modules coming from the
slave.

Unless specified, the functions return a value of 1, if they finish successfully. Note that
unlike for a slave, in the case of a master the incoming data are fetched from a specified
slave. This allows the program to process the response from the same slave as the one
to which the data from the master has been transferred.

Example. Following example illustrates a progrdmbthat acts as a common interface
between several plant simulators (masters ofithid and models of the environment
(slaves of thénub). The program establishes all connections to its masters and slaves.
Then for each communication module, it receives from a given master, it sends the
module to a slave with an index specified as the first parameter of the communication
module. The index of the master is stored as the first parameter of the symbol sent to
the slave.

After each module is transferred to a specific slave, the response from a slave is
checked and if there is one, the communication modules sent by the slave are trans-
ferred to the proper master. Just in case the slave processes are not responding imme-
diately, the input from all of them is again checked at the end of a single transmission.

The full listing of the program follows.

#include "comm_lib.h"

void MainLoop(void)
{

Cmodule_type two_modules[2], comm_module;
unsigned long module_id;

CTURTLE turtle;

char string[2048];

int slave, master;

[* infinite loop - until signal 'exit’ comes */

for(;;) {

CSBeginTransmission();
[* begin transmission to all slaves */

for(i=0;i<CMGetNumberOfSlaves();i++)
CMBeginTransmission(i);

81

[* process the data */

while(CSGetData(&master, &module_id, two_modules, &turtle)) {

if(two_modules[0].num_params>0 &&
two_modules[0].params[0].value > 0 &&
two_modules[0].params[0].value <= CMGetNumberOfSlaves()) {

slave = two_modules[0].params[0].value-1;

/* store the index of the master */
two_modules[0].params[0].value = master;

if(CMSendCommSymbol(slave,
module_id, two_modules, &turtle)) {
/* send graphics */
while(CSGetString(&master, string, sizeof(string)))
CMSendsString(slave, string);
}

/* check for possible response */
while(CMGetCommunicationModule(slave, &module_id,
&comm_module)) {
/* retrieve the master */
master = comm_module.params[0].value;
/* do not change the first parameter */
comm_module.params[0].set = O;

CSSendData(master, module_id, comm_module);

}

CMEndTransmission(module_id);

[* process the rest */
for(slave = 0; slave < CMGetNumberOfSlaves(); slave++)
while(CMGetCommunicationModule(slave,&module_id,&comm_module)){
[* retrieve the master */
master = comm_module.params[0].value;
/* do not change the first parameter */
comm_module.params[0].set = O;

CSSendData(master, module_id, comm_module);

82

if(CSEndTransmission()) break;

}
}

I‘xx *kkhkkkkkkk *kkkkk *% *kkk *kkk *kkkkkk x/
void main(int argc, char **argv)

[* establishes all connections according to -C parameter */
CSlnitialize(&argc, &argv);

MainLoop();

CTerminate();

The two sections below describes the function of an initialization progtartand
a simple drawing prograimraw.

8.5.2 Initialization program

Programstart reads in a text specification file and executes a set of communicatings/cpfg3.4.exam-
processes. The program takes as a parameter the name of the specification file aek#Distr.environ/-
optional switch-v to run the program in a verbose mode with detailed report displayeth_start
in the terminal window.

The specification file contains the definition of processes and connections between
couples of processes. The specification of a process starts with conpmoaredses:
followed by a group of lines, not separated by an empty line, with commands:

name: processname Defines a unique process name.

host: machinename Defines the name of the machine on which the process is exe-
cuted. If the command is omitted, the local machine is used.

files: list of filenamesSpecifies files which have to be copied to the remote machine.
This command can be repeated several times to specify more files.

command: binary with parametersDefines the executable of the process. The full
path does not have to be specified if the process path is set in the system variable
PATH.

display: machine Specifies the machine to which the display is redirected. If not spec-
ified, the system variabl® I SPLAY is set to the local machine. Since plant
simulatorcpfg needs the connection to an X-server, it is necessary to spec-
ify a valid display variable, especially if the program is executed on a remote
machine. The X-server connection is required in order to use calls to graphics

83

library OpenGL. If the plant simulator is connected to the X-server on a different
machine, a lot of data have to be transferred between these machines to create
the image of the plant. Thus if it is not possible to connect to the display on the
same machine as the one of the plant simulator, either the plant simulator should
generate only a list of primitives or L-system strings or it should be compiled
using a public domain graphics library equivalent to OpeHGivhich does not

need the connection to an X-server.

Note that commandetenwsed for modifying the variablBISPLAYmay not
work in every operating system. In that case it is possible to add a corresponding
variant of the commansetenvto the command line of the process.

Each command can be replaced by one or more letters, because only the first character
of a command is considered. A line starting with symbol '#' is ignored. An empty line
separates definitions of different processes.

Every process specified in the list has to be compiled with the same version of the
communication library and has to start with call to funct©mtialize() or CSinitial-
ize()and finish with a call t&CTerminate()see the previous section).

All communicating processes have to be specified before defining connections. The
specification of connections follows the commaotinections:Each line defines a set
of connections. For example, the line:

masterl,...,masterN -> slavel,...,slaveM: spec_file common_parameters

initiates M.N connections between each of thé masters and all/ slaves using

the same type of communication (specified in the communication specification file).
In addition, common command-line parameters added to process executantes (
monparameterycan be defined. Processes are referred to by their name.

In the following example, a drawing procedsaw_server(nameddraw) commu-
nicates with two modeling programepfg (namedtreelandtree?. Both modeling
programs are masters to an environmental procketsm (namedight) simulating the
local light environment shared by the two trees. The specification file is listed below.

processes:
name: draw
files: specs.e
command: draw_server -r shaded

name: treel

host: ik

files: specs.e tree.e tree.mat treel.l tree.v tree.a leaf.s
command: cpfg -a -M tree.mat treel.l tree.v tree.a
display: shere

10Library MESA by Brian Paul available at http://www.ssec.wisc.edulanp/Mesa.html.

84

name: tree2

host: shere

files: specs.e tree.e tree.mat tree2.| tree.v tree.a leaf.s
command: cpfg -a -M tree.mat tree2.l tree.v tree.a

name: light

host: ip

files: tree.e light.spec
command: chiba2 light.spec

connections:
draw -> treel,tree2: specs.e -g -w 640 480
treel,tree2 -> light: tree.e

The programstart operates as follows. First, it processes the specification file.
For each process run on a remote machine, a unique diréttguicpfgtmpXXXXXX
is created on the specified host and all required files are copied into it (using system
commandcp).

After all connection are read, all processes are started one by one using system
commandsh:

rsh host "cd /tmp/cpfgmp XXXXXX; setenv DISPLAY host:0.0;

path/binary connectiaparams commaparams specifiegarams &” &

The process pathathis either specified or obtained using system commahith
The connection is specified by connection parametensiectionparamsdescribed at
the beginning of this section:

-C -c,confirm_socket,host_of start;-m:spec_filel,socketl,...
...;-s:spec_fileK,socketK,master_hostK

Each process obtains a sockenfirmsocketo which it should confirm execution and
send a character 'T’ upon termination. Each master connection is defined by a socket
and a specification file. Each slave connection in addition needs the machine name of
the master that sets up the socket. Parametarsnonparamsare parameters shared

by both processes communicating with each other (specified with each connection, in
the example aboveg -w 640 480 and specifiedparamsare these defined with the
process.

The programstart waits up to 20 seconds for the confirmation of a successful ex-
ecution of a process. If it is confirmed, the next process is spawned. Otherwise all
previously started processes are terminated by sending character 'K’ on their confirm
socket. This sockets is automatically monitored during calls to functions of the commu-
nication library. Any ongoing communication is terminated and the process is forced
to terminate.

85

After all processes are successfully started the program waits for a signal from
processes about their termination. After all signals are received, the program removes
all files and directories created fimpon all used hosts.

8.5.3 Drawing program

In the example from the previous section, two processes simulating two trees are hofakcpfg3.4.exam-
municating with a drawing programiraw_serverthat displays both trees in a singlgles/Distr.environ/-
window. with_start
The programdraw_server communicates with plant simulators by sending text
commands, such agew viewor step and receiving the graphical information about
the simulated structure. Currently, the program recognizes two forms of graphical
data. First, it is an array of values representing the color and depth for each pixel. The
depth value is necessary in case images from several programs are combined into one
window. The second format consists of a list of primitives (a sequence of OpenGL-like
commands — see Section 7.4) describing the geometry of the modeled structure.
The programdraw_serveris linked with the communication librargomm thus
connections between the program and plant models are defined using command line
switch-C. This switch is set automatically if the distributing progratartis used (see
the previous section). Other command line parameters include:

—r mode Sets the rendering mode. Currentthaded flat, andwireframe mode is
supported. The default shaded

—c num Defines the number of polygons around a cylinder.

—w xsize ysizeSpecifies the size of the window. Since the program is drawing the
models into an pixmap, which is then copied into the window when necessary
and it does not store the information coming from plant models, it is not possible
to resize the window.

Switchesr and-c are considered only if the interpretation of OpenGL-like commands
is performed.

Although the prograndraw_serveris designed to communicate with the plant sim-
ulatorcpfg , it is possible to use a simple procasaw._client that sends all the data
from its standard input to the drawing process specified by a socket.

Let us consider an example, in which first the drawing programs is executed with
following switches:

draw_server -C -m:specs.e,1244 -w 640 480

setting the window size and a socket for the communication. The communication is
specified by filespecs.e

strings only: on

86

which allows strings being sent between the processes (nhot communication modules
?E).

After its execution, the drawing process is waiting for the first transfer of data
through the specified socket. If thieaw_serveris running on machinshere for ex-
ample, the data can be sent by calling:

draw_client -C -m:specs.e,1244,shere
and typing in following commands:

clear 1 1 1 /* background color */
material
05 05 01 /* ambient color (r,g,b,alpha) */

1101 [* diffuse color */
0001 [* specular color */
0001 [* emissive color */
0 /* transparency */
polygon

000

010

100

When the last line is typed in and the input is terminated by pressing&eysol and
D, the data are transferred to the drawing process that draws a yellow triangle on a
white background.

Thus it is possible to add the drawing client into the distributed system and interac-
tively add primitives to the visualized scene.

87

9 Miscellaneous features

9.1 Rayshade instantiation

Homomorphism productions generally produce the same geometry for a given rhots/cpfg3.4.exam-
ule with a given set of parameters. It is then convenient to take advantage ofpleis’homomorphism/-
information during the output into a rayshade file format, since this format suppoatshade.instancing
instantiation.

It is possible to mark selected homomorphism productions (using a deliimiter
instead of the standareb>). During the rayshade output an object with a name given
by the predecessor of the productions and the values of its parameters is created. Each
time such a module is encountered during the interpretation of the string (while creating
the rayshade file), only a reference to the given object is included in the file, not the
geometry representing the module.

The output consists of three stages:

Stage 1.The string is parsed left to right with the full update of the turtle parameters,
but no output file is created yet. Each time a homomorphism production with the
delimiter-o> is applied to a module, this module with its parameters is searched in

a hash table. If the hash table does not contain the same module with the same set of
parameters, the module is added to the table (together with selected turtle parameters
— the line width, the scale factor, the color index, the color index for the back side of

a surface, and the texture index). Otherwise the encountered module is an instance of
the already stored module and it is not necessary to add it to the hash table.

It is possible to control the precision with which the parameters of the encountered
module are compared with parameters of stored modules. To this end, a view file
commandayshade obijects: format defines the printf style format string.g.

%.3f), used for specifying the precision of the compared parameters. The default value
is %g (the full precision is used), but the number of instances of a single module can
be increased, and consequently the size of the rayshade file reduced, if the precision
is decreased to a few decimal points. In this case a module can be represented by
a module with slightly different parameters, but the resulting structure may be still
acceptably close to the original.

In some instances, the same modules with the same parameters can result in dif-
ferent structures, because some turtle parameters, such as the current line width or
color index are different when the second instance of the module is interpreted. It
is possible to include also turtle parameters (namely the line width, the scale factor,
the color index, the color index for the back side of a surface, and the texture index)
to the comparison between two modules with the same parameters. To do so, words
turtle considerechave to be added after the format string to the view file command
rayshade object

At the end of this stage, the hash table contains all the modules whose geometry
has to be specified at the beginning of the rayshade file (since rayshade format does not
allow backward referencing). Each module is also linked to the module that previously

88

occurred during the interpretation, to be able to process the modules in the opposite
order than the order in which they appeared (used in the following stage).

Stage 2.The modules stored in the hash table are interpreted, in the order given by the
linked list (from right to left in the string). For each modulé or M(ay, as, ..., ay),

a rayshade object with the namé or M _a; _as_..._a,,_ is created and all the geome-

try resulting from the interpretation of the module is stored within this object. If the
module is not a letter, the name starts with symbfulllowed by the ascii code of the
character (for example, module ’;’ would be represented0&8). In the case that

also the turtle parameters are used for the differentiating between the same instances,
a symbol followed by a unique index of the module is added to the object name. The
index differentiate between the same modules with the same parameters.

At the beginning of interpretation of each module, the turtle position and orienta-
tion is set to the default values (positioned at 0, and pointing upwards). Other turtle
parameters, such as the current color or material index or the current line width are
set to the values stored with the module in the hash table. Thus if the turtle is ignored
during the stage 1, all instances will use the same turtle parameters as the ones at the
first occurrence of the module (during the stage 1). If the turtle is considered for the
module comparisons, each instance will have correct turtle parameters.

If during the interpretation of a module another module that can be found in the
hash table is encountered, the encountered module is not interpreted. Instead, a refer-
ence to its object name is included in the rayshade file, followed by a transformation
matrix capturing the current turtle position and orientation. Processing of the mod-
ules in the opposite order than the order in which they appear during the interpretation
guarantees that the object is already defined in the file.

Stage 3. After all instantiated modules are output to the file, the L-system string is
interpreted again. If a module is not found in the hash table, its geometry is output to
the rayshade file. In the case, that the turtle is considered for the comparisons, even if
the turtle parameters of the interpreted and stored module differ the module’s geometry
is output to the file. If the module is found in the hash table, only the reference to the
predefined object is included in the rayshade file. To properly position and orient the
object, the reference to the object is followed by a transformation matrix capturing the
current turtle position and orientation.

9.2 Sending commands to cpfg through sockets

It is possible to control the interactive operation of the plant simulgégby sending hoofs/cpfg3.4.exam-
the commands through sockets. Each menu item has a corresponding commandpl@&sisocket.commands
functionality allows the user, for example, to modify the L-system file, view file, or any
other input file by an external program and then send a command corresponding to the
cpfg menu item$ew L-systeror New View Thus the displayed model can be updated
without interactive participation of the user.

Note that this functionality is available only in the interactive mode of operation.

89

To be able to send the commandsfig, it is necessary to execute it with a com-
mand line switchS followed by an arbitrary number specifying the socket:

epfg-M plant.mat -S 3000 plant.l plant.v.

Afterwards, the user can send an arbitrary command representing a menu item to
the plant simulator by using a progracommandclient The program has two pa-
rameters, the first one specifies the network name of the macpfgés running on
(thus the command can be send also from a remote machine) and the number of the
corresponding socket. The first parameter can be omitted in which case the program
commandclientis trying to access a socket on the local machine.

The commands sent tpfg contain the text of the desired menu items (in case of
submenus, also the text of the upper menu is included, separated by '—’). The program
commandclientreads the commands from the standard input (one command per line),
but it is often more convenient to pipe the commands to the program. For example:

echo” New view” | command_client machine 3000.

or
echo” OQutput|Image| RGB|Save as ...” | command_client 3000.

The command can be all in lower case, because the matching is not case sensitive.
If the menu item with a predefined filename is to be selected, the file has to be
replaced by a dot ("."). Thus

echo” Input|String|binary|Input from.” | command_client 3000

inputs a bhinary string tepfg from the default file name, unless another file name is
specified on the command line:

epfg -M plant.mat -strb my_string.strb -S 3000 plant.l plant.v.

10 Limitations

This section addresses some limitations of the current version of the plant simulator
cpfg

10.1 Using the hardware colormap

When using a hardware colormap, the progagigchecks whether a colormap of size
4096 already exists. Usually it does, as indicated by an X-root vari8@&éDEFAULT.COLORMAP
andcpfguses this colormap (the id if the colormap is again accessible from the X-root).
Sometimes, though, the colormap does not exists or is not big enough and an external
programinstall_mapis called.

This program creates and installs a colormap of the size 4096 (if possible), creates a
new X-root variable calledOPENGLINDEX COLORMAR and stores the colormap

90

index there. Unfortunately, to properly install the colormap the program has to be
terminated. Thus this cannot be donedpfg

The programninstall_mapis located together with other utilities in the same direc-
tory ascpfg This directory should be included in yoBATH variable, otherwise the
program will not be executed and the colormap allocation fails.

10.2 Using cpfg on less than 24-bit screens

If your hardware does not support true color visuaks. (it has less than 24-bits per
pixel), the index mode may not work properly. To determine the number of bits per
pixel of the screen buffer, run commaguhv (on SGIs only) and sum the number of
bitplanes for a single buffered alpha, red, green, and blue channels.

For example, on 8-bit screen you will be able to use only a colormap of size 256
(not16 x 256 as is usual on on 24-bit screen) and in the index mogfy will au-
tomatically switch to this 256 entries even if the default colormap uses the second 256
entries in the hardware colormap of a bigger size. Unfortunately, the current versions of
utility programsloadmap andsavemap do not recognize the type of the screen and
try to load or save the second 256 entries. Thus it maybe necessary to use command
line parameter -c0 both wilhadmap andsavemap.

You can also use command line switeh with a colormap file or switchM with a
material file but in this case, the low number of bits per pixel will significantly reduce
the quality of the output (the image will be dithered). At least use a single buffer mode
(command line switchsb) to increase the number of bit planes allocated for each
pixel (in double-buffered mode, the number is divided by twce-g-. 4 bits per front
and 4 bits per back buffer as compared with 8 bits in a ingle-buffer mode).

10.3 Use of symbol # in the L-system file

Make sure that the symbol # does not appear as the first symbol on the line in an L-
system file or the first symbol after tabs or spaces. Otherwise, the preprocessor tries to
recognize it as its command and the reading of the file fails. If you would like to use a
production with # as the predecessor add an empty left context, such as in:

*x < F#(wid) — #(wid x0.9).
Also make sure that in the case of multiple-line successors the new line does not starts

with # and move the module to the previous line.

10.4 Transparent objects

The support of transparent objects is not very strong in OpenGL. To render transparent

objects correctly, it is necessary to perform two passes through the objects, first draw

the opaque objects, then to sort all transparent or semitransparent objects according to
their position with respect to the viewer, and draw them in that order (with the depth

91

buffer switched off). This is a very time consuming process. Consequently, all objects
resulting from the interpretation of the L-system string are drawn opaque (even if the
material has transparency set to a value above 0).
Nevertheless, it is possible to define transparent object in the background sefsécpfg3.0.features/-
(used, for example, to visualize the concentration contour in the three-dimensionalpretation/-
model of roots). The only limitation is that the objects are not sorted for the secgadcylinders/-
drawing pass and the resulting image may be incorrect. backgroundscene
Note that the transparent objects are output to rayshade or inventor even if they are
not transparent on the screen.

92

11

Things to do

11.1 Problems

On April 21 1998, Jim discovered a problem when using new homomorphisms
and the instance stuff; it causes a crash. He wanted to look at it. | am not sure
what is the current status.

When using stochastic productiorepfg requires stochastic values for ALL
productions, whether they are stochastic or deterministic. This should not be
necessary. Also, the seed is not set! This should be looked at soon.

you cannot have a variable with the same name as an array. It used to be possible,
but now it does not work. An error message is printed if such a variable or array
is defined, but it should be fixed so that the programs allows both.

There’s an error message that is given in the new subLsystem code when a re-
cursive call is attempted to a sub-Lsystem:

ERROR: Recursive call to Sub-L-system #

Right now it exits the program, but it should do like other errors do, and leave
the process running for future rereads.

One thing Jim have noticed is that when running the binary on an O2 there are
strange things happening with the buffers. There seems to be a one pixel margin
around the edge of the window that gets cleared ok, but when the image is finally
drawn apparently random colours appear in that margin, giving a pulsing effect.
Very disconcerting. He does not have the O2 any more, but he should be getting
his Octane early in 1998 and he will check it again, and try compiling to see if it
fixes the problem.

The memory allocated bgpfg s (the resident size) increases with each New
View. This increase may be significant in animations in which the new view
is invoked after each animation step. This problem has not been traced yet, it
may be something related to OpenGL or X. It is not anything directly caused
by cpfg calling malloc, strdump, or realloc, because these calls can be moni-
tored ifcpfg is compiled after runninghake heapcheck . Maybe related to
textures? Maybepfg does not call some cleaning functions of X or OpenGL.

The Jim’s changes related to variables local to each sub L-system do not take
account of cut strings appended at the end of the L-system string.

Sometimes, the buffers are not switched properly, if you resize the window.

The size of the rgh image output lopfg is wrong, but ras output is fine (on
IRIX 6.2).

93

The normals seem to be wrong wh@Gris set to -90.

The bounding box is wrong for all off-screen generated rayshade outputs (used
when defined the optional object consisting of only the bounding box — see
Section7.1), unless the user includes also the view volume (asingdev/null).
Since determining the view volume takes some time and the bounding object is
often not used, it would not be a good idea to compute the bounding box as a
default, but maybe some switch would be nice.

when mapping textures on generalized cylinders, the aspect ratio of the texture
image is preserved. To do this, the length of the contour has to be computed.
Right now it is done approximately by computing the distances betiéem

points lying on the contourn(is the number of control points specifying the
contour). It would be better to compute the real length of the contour.

During instancing of homomorphism productions in rayshade output (Section 7.1),
it may happen that an empty object is defined and rayshade would core dump on
the file. Currently, a tiny transparent sphere is defined in such cases. This could
be better solved by noting which instances are empty and not using them in other
places.

If a contour includes some singularity.@.a sharp edge created by having three
control points at the same location), the normals are not correct.

Cpfg should start with a reasonable colormap in the index mode to avoid a black
window if the user forgets to rulmadmap .

Spheres are not textured. What mapping to use?

Cpfg generated Inventor files have sometimes too big memory requirements
(possibly related to too many items in a group).

Directional lights do not convert properly to Inventor output (they are defined as
a very distant point source).

If a predefined surface is not included in the view file, the created input file can-
not be viewed (the viewer does not read such a file). Either remove the references
to such surfaces or at least print a warning message.

Currently,cpfg sends only recognized blackbox modules to the environment
(e.g.@C is not passed to the environment gD is). This is a bigger problem
related to multiple-symbol modules. | would suggest to send only a single mod-
ule after?E/, because a homomorphism production can be used to replace this
module with a multiple-symbol module.

Cpfg displays the final image without showing the drawing process — a depar-
ture fromcpfg2.7 ; visible, in particular in lilacs.

94

Maybe input string should not reread the view. A good question — what should
and what should not be reread?

The materials with textures sure gives a lot more scope for making images... but
its slow on old machines. It'd be nice to have textures off during rotations or
something...

It would be nice to enhance rotation speed by allowing for a different mode while
the object is being rotated.

Sub L-systems should have names, instead of the cryptic numbers.

11.2 Fixes to the manual

Section 7.4 need to say under what conditions which of the statements appear,
assumedly by reference to the view file parameters. Although currepfty,
outputs the viewing parameters in a single projection matrix.

Format strings are used in a few places. It would be nice to have a section
explaining the general setup, along with usage examples.

It would be nice to include an example of rayshade instancovy (Productions)
where turtle’s parameters are considered.

Regarding the manual describing environmental programs, it may be nice to in-
clude an example of the environment argument file in the description (this is
optional, because an example is a part of the vlab object that you point to an
example anyway).

11.3 Suggestions for future extensions or improvements

It would be nice to have an option for having interpretation step both before and
after the environmental step, only before it or only after it.

Global homomorphism is not implemented. Right now, each L-system has its
own homomorphism productions (page 24).

Extend the programming language by incorporating structures, user-defined func-
tions, or typed variables.

It would be really good if the extent of labels was included in the bounding box
computed bypfg .

It would be helpful to be able to define a command that would be run for files
before input and after output.@.gzip).

95

In case of textures, do not limit the size to power of t@a(some new machines
can handle a size of a multiple of 2). Include a switch or create a bigger texture
image with black boundaries and scale the texel coordinates.

Adding of depth test to postscript output.
Textures in the background scene.

It would be better if it was possible to avoid menus by pressing keys. Especially
when the menu causes expose event after it is closed. At least to have a stop
animation button.

Create an HTML version of this manual.

Enable user-defined functionsaépfg .

Is there a way how to allow the user to specify a blackbox functions?
Add antialiasing.

For a more efficient visualization of environments add the possibility to send the
visualization information (images or GLS files) through additional data stream
or using the current communication process (at the end afteEalare sent back

tocpfg).

Use the OpenGL shared display lists for a more efficient displaying of predefined
surfaces.

Switch between sub L-systems (or tables) on a flag. (this could be done even
now by using a global variable and having a production which would switch the
sub L-system if this variable is changed).

Switch off environmental step on a flag. (as in the previous point, modiles
can be introduced just before they are needed, using global varieljes step
counter — although this solution would not eliminate the environmental pass,
only no data would be transferred betwepfg and the environment).

enable different homomorphisms, one for the environment, one for the screen
(actually there could be one for each type of output as well — string, rayshade,
postscript,etc.). Switching from one to another could be controlled by some
variable

Add a smooth interpolation of colors,g. along the stems (even in the shaded
mode).

Would it be possible to use shared libraries to add mathematical and blackbox
functions without recompiling?

96

How about the ability to put the labels in screen space?? maybe in a separate
parameter 0-1 for each dimension and scaled to fit?

Might be nice if fonts could be specified per label.

Allow the user to change format for parameters in string output; currently scien-
tific notation.

Should there be a window opened when a warning message is sent rather than
just to the console? The console is not necessarily open.

Allow for different timing within sub L-systems.

In perspective viewing, can the image be automatically scaled to properly fit
the window (and if this is the case, how should the parameters be passed to
rayshade)?

How about having the light stay fixed when the object is rotated?

How about having the system call incorporate additional variable values using
an sprintf?

Make it possible to access view parameters from productions.

97

Part Il
Examples

This section contains examples of many models createdpliy . The input files
for these examples are included witbfg and can be conveniently examined and
experimented with using the Virtual Laboratory frameworlgb . Instructions for
getting the Virtual Laboratory distribution are given in Section 3.

12 Quadratic Koch island

Figure 9 shows several approximations of thedratic Koch islandrom The Algo-
rithmic Beauty of Plant§7] page 8. They were generated with the command:

cpfg koch.l koch.v

The files’ contents are detailed in the following sections.

12.1 koch.l

Isystem: O

derivation length: 3
axiom: F-F-F-F

F --> F+F-F-FF+F+F-F

endlsystem

This L-system introduces three turtle symbdis+, and- . TheF symbol causes
the turtle to move forward, and draw a straight line. Fhand- symbols cause the
turtle to turn counter-clockwise and clockwise respectively. The amount that the turtle
turns Q0° in this example) is specified in the viewing file (Section 12.2).

The axiomF-F-F-F draws a square. The production:

F --> F+F-F-FF+F+F-F

replaces each line segment with a shape as shown in Figure 10. Note that there are no
productions for ther and- symbols. Symbols with no replacement productions are
replaced with themselves. In other wordpfg treats this L-system as if it contained
these productions:

+ >+
o> -

98

n=2 n=3
Figure 9: Koch Islands generatedrin= 0,1,2,and 3 derivation steps

12.2 koch.v

angle factor: 4

initial color: 1

color increment: 0

initial line width: 2

line width increment: 0
viewpoint: 0,0,1

view reference point: 0,0,0
twist: 0

99

Figure 10: The production F— F+F-F-FF+F+F-F

projection:

parallel front distance: -100000.0
back distance: 100000.0
scale factor: 0.9

z buffer: off

cue range: O

shade mode: 7

light direction: 1.0, 1.0, 1.0
diffuse reflection: 0

tropism direction: 0.0,1.0,0.0
initial elasticity: 0.0
elasticity increment: 0.0

This is a fairly typical viewing file. The most important value for this fractal is:
angle increment: 90
This tellscpfg that the angle increment used with thand- commands is equal to

90°.

13 Koch snowflake curve

Figure 11 shows several derivations of #ach snowflakeThey were generated with
the command:

cpfg snowflake.l snowflake.v

The files’ contents are detailed in the following sections.

13.1 snowflake.l

Isystem: 0
derivation length: 3

100

n=2 n=3
Figure 11: Snowflake curves

axiom: F-F-F
F --> F+F--F+F
endlsystem

The axiomF-F-F draws a triangle. The production:

F --> F+F--F+F

replaces each line segment with the shape shown in Figure 12.

101

Figure 12: The production F— F+F-F+F

13.2 snowflake.v

angle increment: 60

The+ and- commands for this L-system rotate the turtle@sy’. The viewing
file for the snowflake is identical to that for the Quadratic Koch island except for the
different angle increment.

14 Combination of islands and lakes

Figure 13 illustrates an application of the turtle symbb|: which moves the turtle
forward, but does not draw a line. The L-system used to generate this image is shown
below.

14.1 lakes.|

Isystem: 0
derivation length: 2

axiom: F+F+F+F

F --> F+f-FF+F+FF+Ff+FF-f+FF-F-FF-F-FFF
f o> fffff

endlsystem

The axiomF+F+F+F draws a square. The production:
F --> F+f-FF+F+FF+Ff+FF-f+FF-F-FF-Ff-FFF

replaces each line segment with the shape shown in Figure 14.

102

-
DDDDDDDDD::::::DDDDDDDDD
= DDDDEDD :I:::I DDDDEDD
DDDDDDD l:::ll:l DDDDDDD -
DDEDDDDDD:::DDDDDDEDDDD

Figure 13: Islands and Lakes

[]

[]

Figure 14: The production F— F+f-FF+F+FF+Ff+FF-f+FF-F-FF-Ff-FFF

15 Dragon curve

Figure 15 shows several generations ofdhggon curve The L-system used to gener-
ate this image is shown below.

15.1 dragon.l

Isystem: 0
derivation length: 12
axiom: FL

103

]
n=_8 n=12
Figure 15: Dragon Curves

L --> L+RF+
R--> -FL-R
endlsystem
The dragon curve consists of two types of edges, “left” and “right”. The L-system

which generates the dragon curve is based on an L-system with two symbols for edges
F; andF,.:

axiom: F;
m : = F+F+
D2 : Fr_>_-Fl_Fr

Figure 16 shows the replacements made by this L-system. We can convert this
L-system to one which uses only one type of edge symbol as follows.

104

Figure 16: The productions, — F; + F,.+ andF, — —F; — F,

Assume temporarily that a production predecessor can contain more than one let-
ter; thus an entire subword can be replaced by the successor of a single production
(a formalization of this concept is termedpaeudo-L-systerand is discussed ifihe
Algorithmic Beauty of Plantf7]). The dragon-generating L-system can be rewritten
as:

axiom: Fli
D1 : Fl— Fl+rF+
Do : rF—» —Fl—rF

where the symbolsandr are not interpreted by the turtle. Productignreplaces the
letter! by the string + rF'— while the leading letteF’ is left intact. In a similar way,
productionp replaces the letterby the string— F'l —r and leaves the trailing' intact.
Thus, the L-system can be transformed as follows:

axiom: Fl
D1 = l+rF+
D2 cr—=—=Fl—r

16 Branching structures

Branches in structures such as those shown in Figure 17 are delimited by the turtle
symbolg and] . The turtle saves its state at the start of a branch, and restores it when
the turtle reaches the end. See page Zrhaf Algorithmic Beauty of Planfg] for more
details. The following section shows the L-system file for the first “plant”. Productions
for the remaining structures are indicated in Figure 17.

16.1 plant.l

Isystem: O
derivation length: 5
axiom: F

F--> F[+F]F[-F]F
endlsystem

105

1&;

e
~

N

4

F — F[+F]F[-F]F F— F[+F]F[-FI[F] F — FF-[-F+F+F]+[+F-F-F]

4

X — F[+X]F[-X]+X X — F[+X][-X]FX X — F-[[X]+X]+F[+FX]-X
F—FF F— FF F— FF

Figure 17: Examples of plant-like branching structures

17 Stochastic L-systems

All plants generated by the same deterministic L-system are identical. An attempt
to combine them in the same picture would produce a striking, artificial regularity.
Stochastic L-systems provide for random variations that preserve the general aspects
of a type of plant, but modify the detalils.

Figure 18 shows several plants generated with the same stochastic L-system (except

106

4
NV Y

for different seed values).

1 .
4

Figure 18: Stochastic branching structures

17.1 plants.|

Isystem:
seed: 2454
derivation length: 3

axiom: F
F--> F[+F]F[-FIF : 1/3
F--> F[+F]F : 13
F--> F[-F]F : 1/3
endlsystem
This is a stochastic L-system. There are three possible successorsFaytimdol.
For eachF symbol in the stringepfg randomly picks one of the three available pro-
ductions. The probabilities for each production are giveh/as so they are equally

likely to be applied. Note that expressions can be used for the probabilitysedte
keyword specifies a seed for the random number generator.

18 Context sensitive L-systems

Figure 19 shows a plant generated with a context-sensitive L-system.

1 Note that theNew Model andNew L-systemmenu options do not reset the seed value, so a different
structure will be generated each time one of these items is selected.

107

Figure 19: A plant generated with a context-sensitive L-system

18.1 context.l

Isystem: 0
derivation length: 30
ignore: +-F

axiom: F1F1F1

1->0
0->1

-> 1F1

--> 0

--> 1

--> 1

-> 1[-F1F1]
--> 0

* o>+

* o> -

N

* *OO0O0O0ORRERR

ANNANNNNANNNANAN
OOR R OORLR
OrRrOROR

+|
VV
VVVYVYVYVYVYV

108

Figure 20: “Row of Trees” generated using a parametric L-system

endlsystem

The productions of this L-system have the following structure:

1 < 1 > 1 --> 0
Left Context Predecessor Right Context Successor

This production will replace a giveh with 0 only if it is preceded byl and followed
by 1. The commandgnore: +-F tells cpfg not to consider the-, - andF
symbols when matching contexts. Other examples of context sensitive L-systems are
given in Section 1.8 of he Algorithmic Beauty of Plan{g].

The production:

T

lists* for both the left and right context, and consequently, will matersggmbol with
anycontext. The* is not required. The following productions are equivalent:

o> k> 4
- > x>+
* <o >+
- >+

19 Parametric L-systems

Figure 20 shows a fractal generated with a parametric L-system.

109

19.1 rowoftrees.|

#define STEPS 7
#define a 86
#define p 0.3
#define d1 2
#define d2 1
#define d3 0

#define q (1-p)
#define h ((p*q)"0.5)

Isystem: O
derivation length: STEPS
axiom: -(90)F(1)

F(xX) : x>0.05 --> F(x*p)+(a)F(x*h)-(a+a)F(x*h)+(a)F(x*q)
endlsystem

This L-system makes use of parameters to control the distance moved by the turtle.
The initiator (production predecessor) is the hypotertiBeof a right triangleABC
(Figure 21). The first and the fourth edge of the generator subditiiglnto segments
AD and DB, while the remaining two edges traverse the altitdd® in opposite
directions. From elementary geometry it follows that the lengths of these segments
satisfy the equations

gq=c—p and h=/pq.

In the next derivation step, the four edges of the generator can be associated with four
triangles that are similar td BC.

20 Global variables in parametric L-systems

Figure 22 shows a fractal generated with a parametric L-system.

20.1 flake.l

#define STEPS 5
#define af 1.08
#define hf 0.41

Isystem: 0

Start: {h = 20; a = 66;}
EndEach: {h = h*hf, a = a*af;}
derivation length: STEPS
axiom: -(90)F(60)

110

P D g
C

Figure 21: Construction of the generator for the “row of trees.” The edges are associ-
ated with triangles indicated by ticks.

A

o

A
Y

Figure 22: “Snowflake” generated using a parametric L-system

F(x) --> F(x/2-h/tan(a))+(a)
F(h/sin(a))-(2*a)
F(h/sin(a))+(a)
F(x/2-h/tan(a))

endlsystem

This L-system makes use of two global variablesnda. The line:

Start: {h = 20; a = 66;}

111

Figure 23: A stylized apple blossom

sets the initial values at the begining of the derivation, and:
EndEach: {h = h*hf, a = a*af;}

updates the values at the end of each step.

21 Incorporation of predefined surfaces

Figure 23 shows a model which uses predefined surfaces.

21.1 blossom.l

#define SIZE 100

Isystem: 0

derivation length: 3

axiom: /(154)B

B --> [&(72)#;;F(5*SIZE),,!K]

K --> [,S/(72)S/(72)S/(72)SI(72)S]

S --> [[(203)c]["(72)pll,"(34)F(SIZE)#,[-F(SIZE)][+F(SIZE)]]

endlsystem

21.2 blossom.v

angle factor: 21
initial color: 120
color increment: 32

112

Figure 24: Apple Leaf

initial line width: 20.0
line width increment: 3.0
projection: parallel

front distance: -26000.0
back distance: 26000.0
scale factor: 0.7

z buffer: on

cue range: 0

shade mode: 3

light direction: 1.0,0.0,0.0
diffuse reflection: 25
tropism direction: 0.0,2.0,0.0
initial elasticity: 0.02
elasticity increment: -0.02
surface ambient: .15
surface diffuse: .85

line: ~ line.s 1.0

surface: c leaf.s 350
surface: p petal.s 500

21.3 leaf.s

This section specifies the surface of a leaf such as the one shown in Figure 24. It
consists of two patches, but there is no interpolation of shading between them.

-28.72 25.68 -20.64 81.29 -7.50 21.85
CONTACT POINT X: 0.00 Y: -20.00 Z: 0.00

113

Figure 25: Apple Petal

END POINT X: 0.00 Y: -19.61 Z: 0.00
HEADING X: 0.00 Y: 0.99 Z: -0.14
UP X: 0.02 Y: -0.14 Z: -0.99

SIZE: 101.93

Patch_1

TOP COLOR: 298 DIFFUSE: 0.75 BOTTOM COLOR: 298 DIFFUSE: 0.75
AL: " A: T AR: T

L: " R~

BL: " B: " BR: ©

-15.51 0.84 -5.00 -22.12 13.03 -5.00 -28.72 42.48 -5.00 -17.84 60.08 -2.50
-7.35 -10.67 -5.00 -20.00 10.00 -7.50 -20.00 36.05 -5.00 -8.90 75.60 0.00
-10.00 -5.00 -5.00 -10.00 15.00 -5.00 -10.00 40.00 -2.50 -1.52 71.71 2.50
0.00 -20.64 0.00 0.00 16.75 0.00 0.00 16.75 0.00 0.00 81.29 21.85
Patch_2

TOP COLOR: 298 DIFFUSE: 0.75 BOTTOM COLOR: 298 DIFFUSE: 0.75
AL: " A: T AR: T

L: " R~

BL: " B: " BR: ©

0.00 -20.64 0.00 0.00 25.00 0.00 0.00 16.41 0.00 0.00 81.29 21.85

4,31 -5.00 -5.00 10.00 22.17 -5.00 10.00 40.00 -2.50 1.20 70.24 2.50
8.59 -7.50 -7.50 15.74 10.00 -7.50 20.00 25.00 -5.00 12.08 68.89 0.00
14.80 4.23 -5.00 25.68 28.94 -5.00 21.80 45.19 -5.00 19.08 51.62 -2.50

21.4 petal.s

This section specifies the surface of a leaf such as the one shown in Figure 25.

114

-5.93 34.60

8.43 50.90

-1.47 7.91

CONTACT POINT X: 23.63 Y: 849 Z: 0.13
END POINT X: 23.63 Y: 8.70 Z: 0.37

HEADING X: 0.00 Y: 1.00 Z: 0.00

UP X: 0.01 Y: 0.00 Z: 1.00

TOP COLOR: 0 DIFFUSE: 0.00 BOTTOM COLOR: 0 DIFFUSE: 0.00

SIZE: 39.59
Petal_1

AL: 7 A: T AR: 7
L: " R: 7

BL: " B: © BR: ©

22.64 8.49 0.00
22.60 8.49 0.00
23.42 8.49 0.00
22.96 8.43 0.00

20.53 15.22 4.03
19.67 15.00 1.97
26.53 15.00 1.80
26.03 15.00 3.69

13.10 30.26 5.80
19.67 30.00 2.14
26.19 30.00 1.97
34.60 30.75 7.91

22 More predefined surfaces

15.07 40.29 4.35
16.65 49.99 4.83
28.94 50.90 -1.47
32.18 41.26 1.28

Figure 26 shows a lilac inflorescence, incorporating predefined surfaces. The specifi-
cation files can be found iBVLABHOME/oofs/ext/examples/ext/lilac

23 Use of sub-L-systems

Figure 27 shows a model of the sedgarex laevigata In this model, sub-L-systems
are used to generate the male and female spikes. The main L-system, shown in Sec-
tion 23.1 uses th@ symbol to incorporate the productions from the sub-L-systems

included from the filefemale.l

23.1 sedge.l

[* internode growth rate */
#define RATE 1.02

/* For a doubling in branch length we want 1.26 times the width */
[* The exponent is equivalent to log(1.26)/log(2) approximately */

[* for
[* for
[* for
[* for

#define STEMRATE 1.06
/* width of stem at start of internode */
#define STEMWIDTH .0075
[* Sub L-systems for female spike, male spike and leaf */

, male.l

andleaf.|

1.1 we use an exponent of .1375 */
1.2 we use an exponent of .2630 */
1.26 we use an exponent of .3334 */
1.3 we use an exponent of .3785 */

115

Figure 26: A lilac inflorescence

#define F_SPIKE ?(2,1.25)axiom$

#define M_SPIKE ?(3,1.25)axiom$

[* leaf L-system parameters: starting delay, time to turn, and new elasticity */
#define LEAF ?(4,1)axiom((a-10),a,(a-13)/100)$

Isystem: 1

[* nice derivation length 90+ (95?) */

derivation length: 95

axiom: /(30)+(10)#(STEMWIDTH)A(4,4)

* < A(a,t) > * : a==30 --> F(1)/(137.5)M_SPIKE
* < A(dt) > * <10 --> F(1)A(at+1,t+1)

116

Figure 27:Carex laevigata

* < Addt) > * : t==10 --> F(1)/(137.5)[L(a)][S(a)]#(STEMWIDTH)A(a+1,0)
* < #(d) > * : d<200 --> #(d*STEMRATE)

/* ! is used here so that width won't be increased */

* < 8@ > *: * --> [(25)_(0-.1)!(.3)F((30-a)/5)F((30-a)/5)_(0)F_SPIKE]

* < L(@) > *: * --> [(60)!(.1)LEAF]

* < F(t) > * : t<2 --> F(t*RATE)

* < F(t) > * : I(t<2) --> F(t*RATE/2)F(t*RATE/2)

117

endlsystem
#include "female.l"
#include "male.l"
#include "leaf.l"

23.2 female.l
This L-system contains the line:
Isystem: 2

and generates the image shown in Figure 28. It is included into the main L-system
with the turtle symbol®(2,1.25) , specifying that L-system 2 is to be included and
scaled by a factor of 1.25.

#define |_RATE 1.01

[* internode growth rate */
#define S_RATE 1.05

[* seed growth rate */
Isystem: 2

derivation length: 76
axiom: ////F(5)axiom

* < A(M) > * o t<75 --> F(.2)[B]/(137.5)A(t+1)

*< B > * x> &B5)[(L)/(A80)[(L) c(L)#(.1)F(.5)]

* < F(t) > * @ t<l --> F(t*|_RATE)

* < &@) > * : a<b0 --> &(a*S_RATE)

* <) > * <2 --> Tf(t*S_RATE)

* < g(t) > *: t<2 --> "¢(t*S_RATE)

* < axiom > * : * --> [&(30)/(180)7f(2.25)#(.1)F(.5)]F(.1)/(180)
[&(30)/(180)7f(2.25)#(.1)F(.5)])/(137.5)A(0)

endlsystem

24 L-System defined surfaces

Figure 29 shows several stages in the developmentgthnis coronaridlower. The
specification files can be found in:
$VLABHOME/oofs/ext/examples/ext/lychnis
This model uses Bezier surfaces specified by the L-system usin@ Bie{,s,)
symbols. The fildychnis.| contains many parameters controlling both the timing
of the development, and the angles and sizes of various components.

118

Figure 28: Female spike

Figure 29: Lychnis

25 Other examples

Other examples, imllustrating homomorphism, decomposition, the use of generalized
cylinders, and various other features can be found either on the system (see the objects

119

noted at the margins in places where various features are described) or in [2, 3].

120

References

[1] HANAN, J. S. Parametric L-systemsPhD thesis, University of Regina, Regina,
Saskatchewan, Canada, 1992.

[2] MEcH, R. Modeling and Simulation of the Interaction of Plants with the Environ-
ment using L-systems and their Extensid?isD thesis, The University of Calgary,
Calgary, Canada, November 1997.

[3] MEcH, R., PRUSINKIEWICS, P., AND HANAN, J. Extensions to the graphical
interpretation of L-systems based on turtle geometry. Tech. Rep. 97/599/01, Dept.
of Computer Science, The University of Calgary, Calgary, Canada, 1997.

[4] MEcH, R., AND PRUSINKIEWICZ, P. Visual models of plants interacting with
their environmentComputer Graphics (SIGGRAPH '96 Conference Proceedings)
(August 1996), 397-410.

[5] PRUSINKIEWICZ, P.,AND HANAN, J. L-systems: From formalism to program-
ming languages. lhindenmayer systems: Impact on theoretical computer science,
computer graphics, and developmental biolo@y Rozenberg and A. Salomaa,
Eds. Springer-Verlag, Berlin, 1992, pp. 193-211.

[6] PRUSINKIEWICZ, P., AMES, M., AND MECH, R. Synthetic topiaryComputer
Graphics (SIGGRAPH '94 Conference ProceedingsjB8y 1994), 351-358.

[7] PRUSINKIEWICZ, P.,AND LINDENMAYER, A. The algorithmic beauty of plants
Springer-Verlag, New York, 1990 (second printing 1996). With J. S. Hanan, F. D.
Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.

[8] Woo, M., NEIDER, J.,AND DAvIS, T. The OpenGL Programming Guide, Second
Edition. Addison-Wesley.

121

A L-system Input Grammar

Lfile

Lsystems

Lsystem

Homomorphism

Homoltems

Homoltem

HomoW arning

HomoSeed

Decomposition

DecompW arning

Decompltems

ProdDepth
Header
BlankLines
BlankLine
Label

Items

%

— 1l — L L =1 =1 =1

— 1

L+ L L1l

Lsystems BlankLines

Lsystems Lsystem
/* empty */

Header Productions Decomposition Homomorph&mdisystem
<newline>

homomorphism HomoW arning < newline > Homoltems
Productions
/* empty */

Homoltems Homoltem
/* empty */

HomoSeed
ProdDepth

warnings
no warnings

seed Expression < newline >

decomposition
Productions
/* empty */

DecompW arning < newline > Decompltems

warnings
no warnings

ProdDepth
/* empty */

depth FExpression < newline >
BlankLines Label Items Axiom
{BlankLin¢g
<newline>
Isystem: Characters<newline>

{Item}

122

Item — Seed

| Dlength

| Ignore

| Consider

| BlankLine

| Defines

| Startblock

| Endblock

| Starteach

| Endeach
Seed — seed: Characters<newline>
Dlength — derivation length; Expressiorknewline>
Consider — consider: Characters<newline>
Ignore — ignore: Characters<newline>
Characters — {<character-}
Startblock — start: Block<newline>
Endblock — end: Block<newline>
Starteach — start each: Block <newline>
Endeach — end each: Block<newline>
Block — { Statement$
Statements — {Statemerjt
Statement — Assignment

| Procedure

| IfStatement

| WhileStatement

| DoStatement
Assignment — LHS= Expression BlankLines
LHS — <identifier>

| <identifier> ArrayRef
ArrayRefs — { ArrayRef }
ArrayRef — [Expression]

123

Procedure — FEaxpression ; BlankLines
1 fStatement — if (FExzpression) BlankLines Block BlankLines
| if (Ezpression) BlankLines Block else BlankLines
Block BlankLines
W hileStatement — while (Eaxpression) BlankLines Block BlankLines
DoStatement — do BlankLines Block while (Expression) ; BlankLines
Defines — define DefineBlock < newline >
DefineBlock — { BlankLines DefStatements }
DefStatements — {DefStatement}
DefStatement — ArrayDefStatement
| ExternalDefStatement
ArrayDef Statement — array ArrayDefs; BlankLines
ArrayDefs — ArrayDef {, ArrayDef }
ArrayDef — <identifier> ArrayDims
| <identifier> ArrayDims = ArrayInitBlock
ArrayDims — {ArrayDim}
ArrayDim — [Ezpression]
ExternalDefStatement — external ExternalDefs; BlankLines
EzxternalDefs — EuxternalDef {, ExternalDef}
| EasternalDef
ExternalDef <identifier>

—1

<identifier> ArrayDims

124

Axiom
Productions

Production

Predecessor

Lcontext

Strictpred

Rcontext

Conditional

Precondition
Postcondition

Condition

Successor

StrictSucc

——

—4 1 !

—4

_>
|

axiom: Modules<newline>
{Productior}

BlankLine
PredecessofConditiona] --> Successoknewline>
PredecessofConditiona] -0> Successoknewline>

Strictpred

Lcontext< Strictpred
Strictpred> Rcontext
Lcontext< Strictpred> Rcontext

*
FormalModules
FormalModules

*

FormalModules

: Condition

. Precondition Condition

. Condition Postcondition

. Precondition Condition Postcondition

Block
Block

*

Expression

StrictSucc
StrictSucc Probability

*

Modules

125

Probability
FormalModules

FormalModule

Modules

Module

Symbol
FormalParameters
FormalParameter
Parameters

Expression

-4+ 1 —4 1L 1

S J J TR)

. Expression
{FormalModulg

Symbol
Symbol FormalParameter$

{Module}

Symbol
Symbol Parameterg

<character>

FormalParameter§, FormalParametef
<identifier>

Expressior{, Expressiof

Expressior| Expression
Expressior&& Expression
Expressiors= Expression
Expressiori= Expression
Expressior<> Expression
Expressior< Expression
Expressior<= Expression
Expressior> Expression
Expressiorr= Expression
Expression+ Expression
Expressionr Expression
Expressiort Expression
Expressiorl Expression
Expressior®bExpression
Expressionn Expression
- Expression

! Expression

(Expression

Function

Name

Value

LValue

String

126

Function

FunctionName

Value
Name

LValue

String

—_——

—4+ 14

1

FunctionNamé Expressior)

tan
sin
cos
atan
asin
acos
ran
nran
bran
biran
srand
exp
log
floor
ceil
trunc
fabs
sign
stop
sqrt
printf
fprintf
fopen
fclose
fflush
fscanf

<number-
<identifier>

& <identifier>
& <identifier> ArrayRefs

<string>"

127

Index

animate mode, 7
animation file, 7, 46
array, 20

background scene, 41, 51
buffering, 8, 46

color, 42
colormap, 7
command
define, 20
end, 20
endeach, 20
Isystem, 22
start, 20
starteach, 20
command line parameters, 6
communication
library, 66, 74
module, 34, 62
multiple processes, 9
specification file, 66, 70
type, 70
contour, 41, 49

debugging mode, 6
decomposition, 26
drawing parameters, 38

environmental process, 72
debugging, 80
example, 77

environmental step, 62

functions, 21

generalized cylinder
specification, 32
twist, 41

homomorphism, 10, 23
instantiation, 25

128

maximum depth, 24
warnings, 24

inventor output, 10

L-system

environmentally-sensitive, 34

main, 22
open, 34, 62
sub L-system, 22
L-system file, 7
light, 42
line, 40

material table, 7, 8
menu

animation, 15

main, 13

menu bar, 8

overlay menu, 8
module

communication, 34, 62

off-screen rendering, 8

pixmap, 8
polygon specification, 30
postscript output, 10
preprocessor, 6
production

multiple sets, 22
programming statement, 18
projection, 37

rayshade, 40
rayshade output, 10

string
input from stdin, 9
output, 10, 59
surface, 41
drawing, 31

specification file, 48

texture, 43
tropism, 45
changing parameters, 33
tsurface, 41
specification file, 49
turtle
parameters
changing, 28
setting, 36
rotations, 27
scale, 29, 37

variable

global, 20
verbose mode, 6
view file, 7, 36
view parameters, 37

warning mode, 6

window
position, 8
size, 8, 13
title, 8

129

