/* Terminalia catappa */ #define R1 0.94 #define R2 0.87 #define A1 24.4 #define A2 36.9 #define ALPHA 138.5 #define A3 90 Lsystem: 1 derivation length: 1 Consider: ?E Axiom: B;(2)[C T(1)]-(90)f(2.2)+(90)[;(4)C T(0)] /* generate the desired number of lateral branches */ T(d) --> [-(A3)/(180*d)F(1)?E(1)A(1)] /(ALPHA)[-(A3)/(180*(1-d))F(1)?E(1)A(1)] /(ALPHA)[-(A3)/(180*d)F(1)?E(1)A(1)] /(ALPHA)[-(A3)/(180*(1-d))F(1)?E(1)A(1)] /(ALPHA)[-(A3)/(180*d)F(1)?E(1)A(1)] ?E(r) < A(l) : r == 1 --> [^(A2)F(l*R2)?E(0.8)A(l*R2)] &(A1)F(l*R1)?E(0.9)/(180)A(l*R1) ?E(n) --> ?E(1) homomorphism: no warnings B --> [@M(-15,0,0)f(-2)F(4)] A(l) --> @O F(l) --> @OF(l)[,@v&(90)f(ran(0.01))^(90)@c(0.5*2)] C --> [@R(0,0,1),&(90)f(ran(0.0001))^(90)@c(0.5*2)] endlsystem